首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 250 毫秒
1.
为解决电动汽车驾驶员里程焦虑问题,并为车辆行驶里程预测提供重要依据,本文提出一种基于数据驱动的方法来探讨电动汽车行驶里程和电池SOC之间的关系。首先对采集的原始数据进行删除、插值和平均处理,再对电动汽车行驶里程和电池SOC进行相关性分析并建立模型,利用递推最小二乘法对模型参数进行辨识。利用北京市运营物流电动车的数据对建立的模型及参数辨识结果进行验证。实验结果表明,本文采用的基于数据驱动预测行驶里程的方法是可行的,所建立的行驶里程与电池SOC模型具有较高的准确度。  相似文献   

2.
电池荷电状态(state of charge,SOC)的准确估计是电动汽车合理实施电池管理的前提条件和重要依据.针对目前电动汽车对动力电池SOC估计精度的不断提高这一问题,利用联合估计法对锂电池SOC进行研究.基于Thevenin电池模型与修正的安时积分算法,推导出了锂电池的输出方程以及状态空间模型,通过采集实验过程中的相关数据并应用递推最小二乘法对电池模型参数作出辨识.分析了扩展卡尔曼滤波(EKF)算法以及自适应BP神经网络算法的原理,联合两种算法并在此基础上提出了自适应BP-EKF算法(ABP-EKF).运用所提出的算法对锂离子电池SOC进行联合估计,最后通过对比ABP-EKF与EKF两种算法估计锂电池SOC的数据,研究结果表明:所提出ABP-EKF算法相比于EKF算法在均值误差项与均方根误差项分别减少了3.9%和3.79%.  相似文献   

3.
纯电动汽车行驶里程预测是驾驶者最关心的问题之一,为解决现有预测算法模型精度低、相对误差大的问题,本文采用融合片段回归与单点分类的机器学习方法对行驶里程进行预测.以真实车辆各项状态参数、环境信息等作为输入,通过聚类和过滤封装式特征筛选,提取最优特征集合,并基于行驶片段样本量选择预测方法,通过对环境温度和电池健康状态(SOH)进行分层耦合提高片段回归预测精度,通过单点分类和片段回归预测模型融合优化最终预测结果.行驶里程测试集预测结果中均方根相对误差(RMSRE)为0.035,平均相对误差为1.71%,能够精确稳定地实现行驶里程预测.  相似文献   

4.
纯电动汽车行驶里程预测是驾驶者最关心的问题之一,为解决现有预测算法模型精度低、相对误差大的问题,本文采用融合片段回归与单点分类的机器学习方法对行驶里程进行预测.以真实车辆各项状态参数、环境信息等作为输入,通过聚类和过滤封装式特征筛选,提取最优特征集合,并基于行驶片段样本量选择预测方法,通过对环境温度和电池健康状态(SOH)进行分层耦合提高片段回归预测精度,通过单点分类和片段回归预测模型融合优化最终预测结果.行驶里程测试集预测结果中均方根相对误差(RMSRE)为0.035,平均相对误差为1.71%,能够精确稳定地实现行驶里程预测.  相似文献   

5.
准确预测电池的荷电状态(SOC)对纯电动汽车的安全可靠的运行具有重要意义.标准的粒子滤波算法对锂离子动力电池的非线性特征有一定的适应性,能够对电池的 SOC做出估计.但是在标准粒子滤波运算过程中普遍存在粒子退化现象,导致算法效率和预测精度降低.因此,本文提出一种新的人工免疫粒子滤波算法,将人工免疫算法的原理引入标准粒子滤波算法的粒子更新过程中,对锂离子动力电池SOC的估计进行优化,以提高SOC估计的准确性.利用北京市实际运营的纯电动汽车电池数据,对所提出的电池SOC算法进行实证研究.实验结果表明,相对于标准粒子滤波算法,人工免疫粒子滤波算法能够增加粒子的多样性,具有更好的SOC预测精度和有效性.  相似文献   

6.
电动汽车电池剩余使用寿命预测是当下电池研究领域的热点内容,现有电池剩余使用寿命预测模型大多基于单一预测指标,预测精度较低,模型的泛化性能较差。本文通过实车数据构建了GM-LSTM的Stacking融合模型,实现电动汽车电池剩余使用寿命的准确预测。首先根据电池剩余使用寿命影响因素,提取车辆真实的运行参数和环境参数,基于随机森林算法筛选最优特征集合作为模型输入,其次选择差分整合移动平均自回归算法对所选特征进行惯性延伸,克服数据时间维度上的限制,最后基于数据特点,分别建立灰色预测模型和长短时记忆神经网络模型实现电池剩余使用寿命预测,并通过Stacking模型融合进一步降低预测误差。结果表明:模型融合 后平均相对误差为1.6%,平均绝对误差为0.013,能够稳定可靠的实现电动汽车电池剩余使用寿命预测。  相似文献   

7.
基于北京市私家电动汽车网联数据,按照充电行为类型提取车辆行程,并对行程中影响快速充电行为的潜在因素进行细致分析;基于Logistic回归模型进行显著性影响因素识别,结果表明,电动汽车续航里程、出行距离、出行时间等因素显著影响电动汽车的快速充电行为;最后,基于显著影响因素建立模型,对私家电动汽车快速充电行为进行预测,预测结果表明,预测模型具有较好的预测效果和可靠度.本文研究成果将有助于优化私家电动汽车的充电行为,提高充电效率.  相似文献   

8.
基于北京市私家电动汽车网联数据,按照充电行为类型提取车辆行程,并对行程中影响快速充电行为的潜在因素进行细致分析;基于Logistic回归模型进行显著性影响因素识别,结果表明,电动汽车续航里程、出行距离、出行时间等因素显著影响电动汽车的快速充电行为;最后,基于显著影响因素建立模型,对私家电动汽车快速充电行为进行预测,预测结果表明,预测模型具有较好的预测效果和可靠度.本文研究成果将有助于优化私家电动汽车的充电行为,提高充电效率.  相似文献   

9.
利用Advisor建立新能源汽车电机仿真模型,对行驶工况进行仿真,利用交流测功机模拟汽车的行驶工况实现动力系统阻力模拟的台架试验,为电动汽车动力驱动系统电机选型、参数匹配提供试验参考。在台架模拟时为减小仿真误差,重点对仿真数据进行粗差处理,之后将该数据发往台架。实验证明:处理后的数据与实际行驶情况基本相符。  相似文献   

10.
基于纯电动汽车中使用的单级减速器现状,利用GT整车仿真软件建立蓄电池、电动机及驱动系统和整车仿真模型,通过对整车行驶动力性能和续驶里程的仿真分析,对减速器速比的选择依据进行研究,并在实车上进行仿真验证,得出不同的整车性能定义下相对合理的速比选择范围。  相似文献   

11.
针对纯电动汽车的动力性分析问题,根据电机的测试数据,建立基于Simulink的动态仿真模型,并进行纯电动汽车动力性指标的仿真计算。结果表明:动态建模仿真方法比传统的动力性计算方法更方便更有效,能反映纯电动汽车在实际道路行驶时负载突变状态下整车的动力性能特点。  相似文献   

12.
提出了一种动态规划改进算法, 根据约束条件确定未来可达状态序列, 通过计算离散状态点间的转移代价, 在保证求解精度的同时, 降低了离线优化计算量; 利用改进动态规划算法设计了增程式电动汽车能量管理策略, 根据能量管理优化问题特点, 建立了动力系统模型和适用于全局优化求解的系统状态方程, 并确定了以动力电池荷电状态为系统状态量和增程器发电功率为系统控制量; 在迭代计算过程中, 将发动机燃油费用和动力电池电能费用之和作为目标函数, 构建了基于北京主干道不同行驶里程仿真工况, 得到了驱动电机需求功率最优分配结果; 提取了增程器启停状态与动力电池荷电状态和驱动电机需求功率二者之间的控制规则, 利用最小二乘法对增程器功率分流比与驱动电机需求功率的分布规律进行拟合, 建立了基于优化规则的能量管理策略。仿真结果表明: 对于行驶里程为100km的仿真工况, 动态规划改进算法计算时间为7 239s, 与经典动态规划算法相比计算效率提高了78.2%;基于优化规则的能量管理策略能够获得类似动态规划改进算法的控制效果, 2种控制策略的动力电池荷电状态误差小于2.5%;相比实车电能消耗-电能维持型控制策略, 基于优化规则的控制策略能够使整车经济性提高5.4%, 使燃油经济性提高7.9%。   相似文献   

13.
锂离子电池温升特性分析及液冷结构设计   总被引:1,自引:0,他引:1  
针对电动汽车动力电池的温升发热导致温度分布不均及过热现象,根据电池的热物性参数及不同环境温度下的内阻,建立电池包生热分析模型;测试采集并拟合电动汽车的母线电流,通过仿真分析得到不同车速下电动汽车电池包的温升情况;进行典型城市工况实车试验,测取不同车速下电池包内温度测点的温升数据并拟合成温升曲线,通过仿真与试验结果对比,验证所建立的热分析模型的准确性;在此基础上,设计双进双出的液冷散热管道结构方案,分析在1C放电倍率下该液冷散热方案的散热效果. 研究结果表明:锂电池在高温(50 ℃)下,内阻仅为13.9 mΩ,而在低温(?30 ℃)时,内阻却达到了21.5 mΩ;电动汽车在新欧洲行驶工况(NEDC工况)和匀速工况(40、50、60、70 km/h)下的最高温升分别为1.8、2.6、3.6、5.3、8.0 ℃;所设计的U型结构液冷管道可以有效地降低电池包温升,提高电池包的温度均匀度.   相似文献   

14.
针对电动公交车运营期碳足迹难以监测的难题,本文设计了一种以实车行驶工况为基础的电动公交车碳排放折算量估计方法。以西安市主城区的609路和新建城区的362路公交车为研究对象,基于实车行驶轨迹数据提出一种面向城市电动公交运营线路的本地化驾驶工况构建方案。首先,引入T-SNE非线性机器学习算法进行数据降维,使用Birch聚类方法进行分类;然后,根据相似度最高原则和各类别比例关系构建两条线路的电动公交车运行工况。在Cruise仿真环境进行百公里耗电量计算,并折算得到碳排放量。结果表明:609路和362路同车型电动公交车百公里能耗分别为121.71 kW ⋅ h 和144.46 kW ⋅ h ,差异较为明显,证明了分线路进行驾驶工况构建的必要性;基于本文提出的估计方法计算了两条公交线电动公交车组在2019年11月的碳足迹,分别为114.099 t和117.863 t。提出的电动公交运营期碳足迹测算方法有助于推行城市交通碳排放监测与管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号