首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
以实测示功图为计算依据,以动力学仿真软件ADAMS为工具,以某4缸柴油机的曲轴—轴承系统为研究对象,耦合分析多工况作用下曲轴—轴承系统动力学行为和摩擦学特性。得到的主要结论是:主轴颈中心径向振动响应振幅随转速提高而降低,随最小油膜厚度增大而上升,而最大油膜压力的变化规律主要取决于气缸最高燃烧压力;主轴颈中心径向振动响应振幅和最大油膜压力随负荷提高而上升,最小油膜厚度随负荷的提高而降低。  相似文献   

2.
为解决曲轴轴瓦间隙不合理而造成的轴瓦易磨损问题,本文运用AVL-Excite Designer对直列四缸汽油机机曲轴轴系进行了模拟分析,得到曲轴主轴承设计间隙下限情况下(目前设计间隙0.024~0.048)的各主轴承相关参数。同时就主轴承间隙对最小油膜厚度和最大油膜压力的影响进行了对比分析,得到了最佳的主轴承设计间隙,为曲轴主轴承的间隙设计提供了依据。  相似文献   

3.
为解决曲轴轴瓦间隙不合理而造成的轴瓦易磨损问题,本文运用AVL-Excite Designer对直列四缸汽油机机曲轴轴系进行了模拟分析,得到曲轴主轴承设计间隙下限情况下(目前设计间隙0.024~0.048)的各主轴承相关参数.同时就主轴承间隙对最小油膜厚度和最大油膜压力的影响进行了对比分析,得到了最佳的主轴承设计间隙,为曲轴主轴承的间隙设计提供了依据.  相似文献   

4.
为解决曲轴轴瓦间隙不合理而造成的轴瓦易磨损问题,本文运用AVL—Excite Desirer对直列四缸汽油机机曲轴轴系进行了模拟分析,得到曲轴主轴承设计间隙下限情况下(目前设计间隙0.024-0.048)的各主轴承相关参数。同时就主轴承间隙对最小油膜厚度和最大油膜压力的影响进行了对比分析,得到了最佳的主轴承设计间隙,为曲轴主轴承的间隙设计提供了依据。  相似文献   

5.
建立某V8增压柴油机曲轴轴系动力学与轴承油膜动力润滑耦合仿真模型,并通过相应试验数据进行校核。通过耦合仿真计算获得各质量点扭振角位移和共振频率,以及轴承载荷、轴心轨迹、最小油膜厚度、最大油膜压力、摩擦功耗等参数。结果表明,主轴承5润滑性能最好,主轴承4则最差。与不考虑油膜动力润滑的计算结果对比,自由端扭振角位移幅值降低9%,扭振附加应力最大降低10.8%。  相似文献   

6.
基于轴承弹流润滑分析的Reynolds方程和Greenwood/Tripp接触模型,对一台四冲程汽油机的某连杆轴承及其相邻主轴承进行润滑分析,包括引入Kirchoff准则和Bernoulli方程分析曲轴油道内的机油流动、搭建油道空穴模型,以模拟油道内的空穴现象。结果表明,计入油道内的机油流动对连杆轴承润滑的分析结果产生明显影响,由于计入油道内的机油流动而改变了边界条件,引起连杆轴承最大油膜压力增加,最小油膜厚度减小,端泄油量和最大摩擦损失功率增加。另外,通过曲轴油道内的机油流动分析可得到油道内的油压分布和机油流量,预测油道空穴的发生;因此,引入油道内机油流动分析对油道空穴预测和合理设置连杆轴承边界条件有重要意义。  相似文献   

7.
基于轴承弹流润滑分析的Reynolds方程和Greenwood/Tripp接触模型,对一台四冲程汽油机的某连杆轴承及其相邻主轴承进行润滑分析,包括引入Kirchoff准则和Bernoulli方程分析曲轴油道内的机油流动、搭建油道空穴模型,以模拟油道内的空穴现象。结果表明,计入油道内的机油流动对连杆轴承润滑的分析结果产生明显影响,由于计入油道内的机油流动而改变了边界条件,引起连杆轴承最大油膜压力增加,最小油膜厚度减小,端泄油量和最大摩擦损失功率增加。另外,通过曲轴油道内的机油流动分析可得到油道内的油压分布和机油流量,预测油道空穴的发生;因此,引入油道内机油流动分析对油道空穴预测和合理设置连杆轴承边界条件有重要意义。  相似文献   

8.
构建了连杆大头轴承仿真模型和试验设计与CAE技术相结合的仿真流程,选定了轴承相对平均间隙、曲柄销油孔直径和轴瓦宽度作为连杆大头轴承润滑特性分析的3个因素.仿真结果表明,影响最小油膜厚度、最大油膜压力和平均摩擦损耗因素的主次顺序为轴承相对平均间隙、曲柄销油孔直径和轴瓦宽度.  相似文献   

9.
针对一款高速汽油机主轴承内部润滑与摩擦磨损问题,考虑到轴承承载不均导致的轴瓦与润滑油非稳态传热,基于弹性流体动力润滑(EHD)和轴承动力学理论方法,通过迭代计算,得出该高速汽油机具有代表性的第三主轴承在最大转速(9500 r/min)时轴承内部精确的温度场与热变形,并以此为轴承新的几何轮廓边界条件分析轴承的实际润滑情况.结果表明,与未考虑轴瓦温度场及热变形相比,轴承润滑状态明显恶化,具体表现为轴承最小油膜厚度减小、最大油膜压力增大,且出现较严重的磨损.最后通过发动机台架试验测得轴承的实际工作情况,并与计算结果进行对比,计算结果与实际摩擦磨损情况吻合,验证了所用方法和所得研究结论的正确性.  相似文献   

10.
针对发动机曲轴系振动与主轴承油膜耦合问题,采用模态减缩法,将曲轴系中每个部件压缩为缩减自由度的子结构模型,并通过不同的连接体对它们进行连接,构成发动机曲轴系的非线性动力学模型,求解该模型,即可得到曲轴的动力学特性与主轴承油膜特性。本文以某四缸发动机为例,采用以上流程对其曲轴系进行非线性动力学仿真分析。计算结果表明,该发动机的曲轴系振动符合设计要求,且对于主轴承轴瓦磨损的预测与试验结果吻合,说明了曲轴系动力学仿真计算的正确性。  相似文献   

11.
车用发动机润滑系统最低润滑油供给量研究   总被引:1,自引:0,他引:1  
以某1.8VVT发动机为研究对象,建立了发动机润滑系统计算模型和轴承动力学模型,对主油道压力、轴承处润滑油流量、轴承轴心轨迹、最小油膜厚度等参数进行了计算分析。通过计算轴承、凸轮和VVT系统等润滑系统关键部件的润滑油压力需求,获得了润滑系统在不同发动机转速下的最低润滑油压力,该计算结果可为润滑系统设计提供理论依据和边界条件。仿真计算结果表明:发动机润滑系统进油压力对轴承润滑的最小油膜厚度基本没有影响;原润滑系统供给润滑油的液压功率实测值超出理论需求值,最高可达72%,原润滑系统存在发动机中高转速工况下供油过量的问题。  相似文献   

12.
直线度误差对活塞销轴承润滑性能的影响   总被引:1,自引:0,他引:1  
基于Reynolds润滑方程和油膜厚度方程,研究了直线度误差对轴承润滑性能的影响,建立了轴向几何型线的数学表达公式;针对某高速大功率柴油机,建立了详细的单缸计算分析仿真模型;研究了锥形、喇叭形、桶形和三角形误差对活塞销轴承的最小油膜厚度、最大油膜压力、轴瓦最大摩擦力矩、平均摩擦功损失以及油膜温度变化曲线和温度场分布的影响规律.研究结果表明:不同活塞销直线度误差的素线形状对轴承润滑性能的影响不同,素线形状的极值点位置对活塞销动态特性和轴承润滑性能的影响较大,素线曲率的影响要小些;使活塞销素线形状失去对称性,或使活塞销刚度减小的误差,对轴承润滑不利,有导致衬套脱落、烧蚀的危险.  相似文献   

13.
对采用局部模型进行发动机主轴承壁强度分析的不足进行了研究,提出了包含完整机体与主轴承盖的整体模型的分析方法。针对某直列4缸柴油机,根据标定转速与最大转速2个工况下主轴承载荷曲线选取曲轴危险转角,以危险转角下主轴瓦的油膜压力与燃烧压力作为工作载荷,进行了基于整体模型的主轴承壁强度分析。结果表明,整体模型法能够更真实地反映主轴承壁的受力情况,提高了计算精度。  相似文献   

14.
进口汽车的曲轴价格昂贵,磨损后在没有配件的情况下可采用电刷镀技术来修复。对于进口汽车来说,产生曲轴磨损的主要原因是:用户对进口汽车的维修使用要求不够了解,添加润滑油时降低了标准,油道被堵塞,轴瓦缺油被烧伤磨轴颈,或维修时未按装置要求操作,使曲轴各道轴颈松紧程度不均,装配过紧处,使曲轴润滑油膜太薄,或无法形成油膜,造成烧伤磨损。在电刷镀时,只要正确执行刷镀工艺就可将曲轴修复。  相似文献   

15.
以某直列3缸汽油机为研究对象,利用 AVL EXCITE 软件建立了曲轴多体动力学仿真模型,通过台架试验,验证了该仿真模型的正确性,在此模型基础上分析了润滑油温度、供油压力以及润滑油种类对发动机曲轴摩擦功的影响规律。研究表明:指定条件下的曲轴摩擦损失功率仿真结果为106.6 W ,台架试验结果为102 W ,误差在5%以内,表明仿真模型具有相当的精度;当润滑油供油温度从40℃升高到110℃时,曲轴摩擦损失功率减小到最低,约为104 W ,当温度超过110℃后,摩擦损失增加,当温度上升到150℃时,摩擦损失功率达到140 W ,润滑条件急剧恶化;当轴承主油道入口压力从0.31 MPa 增加到0.4 MPa 时,曲轴摩擦功率减小约10 W ,且供油温度较低时润滑油供油压力对曲轴摩擦功率影响较大;曲轴摩擦功率随黏度的提高而增加,供油温度较低时,润滑油黏度对曲轴摩擦功率的影响较大。  相似文献   

16.
This study uses an elastohydrodynamic lubrication model coupled with multi-flexible-body dynamics (MFBD) to analyze dynamic bearing lubrication characteristics, such as pressure distribution and oil film thickness. To solve the coupled fluid-structure interaction system, this study uses an MFBD solver and an elastohydrodynamics module. The elastohydrodynamics module passes its force and torque data to the MFBD solver, which can solve general dynamic systems that include rigid and flexible bodies, joints, forces, and contact elements. The MFBD solver analyzes the positions, velocities, and accelerations of the multi-flexible-body system while incorporating the pressure distribution results of the elastohydrodynamics module. The MFBD solver then passes the position and velocity information back to the elastohydrodynamics solver, which reanalyzes the force, torque, and pressure distribution. This iteration is continued throughout the analysis time period. Other functions, such as mesh grid control and oil hole and groove effects, are also implemented. Numerical examples for bearing lubrication systems are demonstrated.  相似文献   

17.
以某型大功率柴油机作为研究对象,采用ADAMS/Engine建立了多缸柴油机曲柄连杆机构多体动力学模型,计算得到了曲轴的工作载荷.通过建立曲轴的整体三维有限元模型,将主轴承对主轴颈的支撑边界定义为接触对以模拟实际的约束状态,并将动力学计算所得一个周期内的曲柄销载荷历程曲线离散为16个载荷点,并按照发火次序,组合得到了16个载荷工况以模拟曲轴上的交变载荷,载荷的施加采用函数分布的形式模拟滑动轴承的压力分布,通过非线性有限元分析得到曲轴的应力应变结果.在此基础上,利用曲轴材料性能数据绘制了曲轴Goodman疲劳强度曲线,自编后处理分析程序得到了曲轴上所有节点的疲劳强度安全系数.结果表明:材料为42CrMo的整体曲轴满足结构疲劳强度要求,油孔处和过渡圆角处的疲劳强度安全系数相对较小,采用Goodman疲劳曲线计算的最小疲劳强度安全系数为5.04.分析结果与曲轴实际失效位置一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号