首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
钢桥桥面上铺筑沥青混合料铺装层至今仍是一个国际性难题。原因在于钢桥桥面铺装层受力复杂,温度、荷载及水对其使用性能的影响比对路面材料要严格得多,尤其是钢桥桥面与沥青混凝土之间的界面层,更是影响桥面铺装层使用寿命的关键因素。结合实体工程,针对钢桥面及沥青混合料铺装层间防水粘结层材料与工艺、铺装层结构材料与工艺、桥面排水系统设计及钢桥桥面与铺装层间抗剪、抗滑措施进行了较为系统的研究,研究结果为钢桥桥面铺装层的设计与施工提供了依据。  相似文献   

2.
大量现场调查表明,因防水粘结层失效而造成的钢桥面铺装层脱层或滑移是造成钢桥面铺装病害的重要原因之一,交通荷载、温度、水等因素通常被认为是影响铺装防水粘结层长期使用的主要因素。根据钢桥面铺装特点与技术要求,选择环氧沥青作为防水粘结层进行试验研究。考虑两种温度(25℃、70℃)的拉拔试验和剪切试验,明确了防水粘结层的温度敏感性;选择不同表面构造钢板进行拉拔试验,考察其对环氧沥青防水粘结层粘结性能的影响;以高温浸水拉拔试验和剪切试验,评价了高温水对钢桥面铺装防水粘结层的影响;试验结果表明:随着温度的升高,防水粘结层的拉拔强度和抗剪强度下降很快;随着浸水时间的增加,拉拔和抗剪强度下降较慢,且抗剪强度基本不变。因此,采用环氧沥青作为钢桥面防水粘结层时,温度应作为首要考虑因素。  相似文献   

3.
层间剪切破坏是钢桥面铺装主要病害之一,为了对钢桥面铺装复合结构层间剪切行为进行研究,基于三维离散-连续耦合方法建立了钢桥面铺装复合结构仿真模型,分析得出30℃条件下钢桥面铺装层间剪切破坏行为的变化规律,分析剪切速率对钢桥面铺装层间剪切受力状态的影响。研究结果表明过高或过低的行车速度对钢桥面铺装层都不利。对比分析离散-连续模型与离散元模型模拟结果发现,离散-连续模型计算结果更加符合实际情况。  相似文献   

4.
详细介绍了高粘度改性沥青SMA铺装技术在钢箱梁桥面铺装中的应用。采用高粘度改性沥青复合新材料技术可改善钢桥面SMA沥青混凝土铺装层的使用性能,显著增强铺装层的抗高温车辙、低温开裂及防水性能,还可大大提高铺装层与钢桥面板之间的界面粘结性能,保障了钢箱梁沥青混凝土使用的安全性、耐久性。  相似文献   

5.
对我国北方寒冷地区钢桥面沥青混凝土铺装层的受力特性和破坏形式进行了分析,重点介绍了寒区钢桥面沥青混凝土铺装结构方案—ERS树脂沥青组合铺装体系,并结合沈阳市后丁香大桥工程,介绍了ERS钢桥面铺装体系及铺装材料室内试验的主要内容。  相似文献   

6.
针对行车荷载下铺装层表面动水压力对铺装层的影响,研究钢桥面环氧沥青混凝土铺装水损害现象,量化分析行车荷载下钢桥面环氧沥青铺装层的动水压力。采用有限元软件ABAQUS建立轮胎-钢桥面环氧沥青铺装层模型,获取流体计算域中轮胎的形状及尺寸;基于计算流体力学建立钢桥面正交异性板铺装复合有限元模型,采用FLUENT数值仿真轮胎在有水铺装层表面上行驶时产生的动水压力;分析行车速度、水膜厚度、轮胎花纹深度等因素对动水压力的影响,得到动水压力的最不利工况。  相似文献   

7.
为了研究粘结层对正交异性钢桥面铺装受力的影响,应用有限元软件ABAQUS对钢桥面铺装的局部梁段进行模拟,探讨是否设置粘结层以及粘结层材料的计算参数(泊松比和模量)和粘结层厚度的改变对钢桥面铺装的受力影响。研究结果表明设置粘结层对整个桥面铺装的受力是有利的。以层间剪应力作为指标,粘结层材料泊松比增大时,层间最大剪应力会有一定减小但剪应变有一定的增加,此外,层间最大剪应力也会随着粘结层材料模量的减小而减小。粘结层厚度的增加也使得层间的剪应力和剪应变都有所减小。以上的这些钢桥面铺装的受力影响也为工程应用中粘结层材料的选择提供一定的理论依据。  相似文献   

8.
大跨径钢桥面铺装粘结层剪切分析   总被引:2,自引:0,他引:2  
针对大跨径钢箱梁桥面铺装,应用有限单元法对正交异性钢桥面铺铺装体系进行分析.分析不同横向和纵向位置下的荷载对铺装粘结层的影响,得出了在水平和竖直荷载综合作用下铺装层的受力规律,为铺装粘结层材料设计以及进一步研究铺装层破坏提供了理论基础.  相似文献   

9.
钢桥面铺装环氧沥青粘结层施工   总被引:3,自引:0,他引:3  
粘结层施工作为钢桥面铺装的重要一环,其材料特性与施工质量的优劣直接影响桥面的铺装使用性能.依据钢桥面铺装对环氧沥青粘结层性能的要求和粘结料的技术性能,介绍了环氧沥青粘结层洒布施工工艺,并对施工流程和施工质量控制等有关环节提出个人看法,供有关同行参考.  相似文献   

10.
借助有限元数值分析方法,分析了界面材料的弹性模量和界面层厚度变化对铺装体系受力的影响及不同层间接触状态下钢桥面铺装体系受力规律,论证了钢桥面铺装中界面黏结的重要性,对于界面层材料设计和施工具有重要的指导意义。  相似文献   

11.
钢桥面铺装技术探讨   总被引:1,自引:0,他引:1  
钢桥面铺装工程在世界上仍处于研究和发展阶段,我国的钢结构桥梁正处于迅速的发展期间,钢桥面铺装工程是钢桥面发展的重要环节.笔者通过对某大桥钢桥面铺装技术研究的工作,探讨了钢桥面铺装中的一些情况.  相似文献   

12.
通过研究某钢桥面铺装体系与某混凝土桥面铺装体系的受力变形,分析2种铺装层的应力应变特性的异同。运用有限元方法建立正交异性钢桥面复合铺装体系模型与混凝土桥面复合铺装体系模型,对比分析了铺装层力学控制指标的变化规律以及铺装层厚度、材料模量对铺装体系力学特性的影响。研究成果可为大跨径钢桥面铺装和混凝土桥面铺装设计提供参考。  相似文献   

13.
钢桥面铺装技术探讨   总被引:2,自引:0,他引:2  
钢桥面铺装工程在世界上仍处于研究和发展阶段,我国的钢结构桥梁正处于迅速的发展期间,钢桥面铺装工程是钢桥面发展的重要环节.笔者通过对某大桥钢桥面铺装技术研究的工作,探讨了钢桥面铺装中的一些情况.  相似文献   

14.
大跨径钢桥面铺装体系关键技术研究进展   总被引:1,自引:0,他引:1  
大跨径钢桥面铺装体系由钢桥面板、沥青混合料铺装层、横隔板、纵隔板、加劲肋及主梁等组成,其关键技术研究包括:钢桥面铺装结构的研究,钢桥面铺装材料性能的研究,钢桥面铺装体系力学特性研究,钢桥面铺装体系疲劳损伤特性研究,钢桥面防腐蚀性能研究以及钢桥面铺装体系的优化设计等,文章综述了近十余年来国内外在这些方面的研究进展,并对进一步研究提出了一些建议.  相似文献   

15.
在桥面铺装体系中,桥面板与沥青铺装层之间是一个薄弱环节,为了使沥青铺装层与桥面板之间有效粘结,防止桥面板因腐蚀而造成桥面板与沥青铺装层之间出现脱层,并最终导致桥面铺装出现早期破坏,这时就需要再桥面板与沥青铺装层之间设置一层防水粘结层。防水粘接层的主要起的作用是在加强沥青铺装层与桥面板之间的粘结,同时也起着防水作用以保护桥面板。调查表明,桥面铺装层间剪切破坏、开裂、水损害等病害都与防水粘结层破坏有很大关系,因此需要加强防水粘结层材料的研究。桥面防水层的种类繁多,有涂膜类、结构类、卷材类等,本文通过室内试验对橡胶沥青、FYT、SBS改性沥青、SBS改性乳化沥青性能进行评价,并在此基础上推荐适合的桥面防水材料。  相似文献   

16.
针对环氧沥青钢桥面铺装材料,通过借助MMLS3加速加载试验方法,分析了大跨径钢桥面环氧沥青铺装面层、粘结层与钢箱梁底层受力变形与加载次数的变化规律.试验结果表明:环氧沥青铺装各结构层动载变形分布范围稳定.在长期循环荷载作用下,其抗疲劳性能优异.  相似文献   

17.
江阴长江公路大桥采用正交异性钢箱梁结构,桥面铺装层在国内首次采用沥青玛蹄脂混凝土材料。将正交异性钢桥面板、铺装层、防水粘结层作为受力整体,建立有限元分析模型,研究荷栽作用位置、荷载类型、防水粘结层材料参数等因素对铺装防水粘结层受力的影响,为桥面铺装防水粘结层材料的设计与选择提供理论依据。  相似文献   

18.
江阴大桥钢桥面防水粘结层受力分析   总被引:4,自引:0,他引:4  
江阴长江公路大桥采用正交异性钢箱梁结构,桥面铺装层采用首次在国内使用的沥青玛蹄脂混凝土材料。本文将正交异性钢桥面板、铺装层、防水粘结层作为受力整体.建立有限元分析模型,研究荷载作用位置、荷载类型、防水粘结层材料参数等因素对铺装防水粘结层受力的影响,为桥面铺装防水粘结层材料的设计与选择提供理论依据。  相似文献   

19.
脱层是大跨径钢桥面铺装的一种主要破坏形式,而且目前出现频繁。超限运输、铺装层材料、压实度和铺装层结构中防腐层破坏等是导致脱层的主要原因,针对各种破坏机理,采用桥面板上增加抗滑设施、提高防水粘结层强度、重视防腐层施工质量等有效措施可以在一定程度上解决脱层问题。  相似文献   

20.
为提出大纵坡钢桥面铺装层设计指标,分析了坡道上车辆与桥面的相互作用以及沥青混合料的时温等效特性。在此基础上,采用ABAQUS软件建立了钢桥面铺装局部三维有限元模型。最后,分析了匀速行驶及紧急制动时纵坡对钢桥面铺装层力学响应的影响。结果表明:纵坡对钢桥面铺装层表面最大横向拉应力、层底最大横向剪应力和最大竖向位移几乎无影响;纵坡对钢桥面铺装层表面最大纵向拉应力和层底最大纵向剪应力影响较为显著;相比匀速行驶时,紧急制动时下坡道纵向拉应力及纵向剪应力大幅增大,尤其是纵向剪受力更不利。在大纵坡钢桥面铺装层设计中,计算铺装层表面最大纵向拉应力和层底最大纵向剪应力时必须充分考虑纵坡影响,重点考虑界面抗剪强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号