首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
准确地对机动车排放污染进行量化评估是机动车排放控制策略制定的前提. 为提高模型计算精度,提出低速行驶比例的概念,用于描述车辆在路段上行驶时瞬时速度的分布特征. 在传统的VSP分布排放模型的基础上,纳入更多的中观影响因素,包括路段平均速度、路段长度、道路等级和低速行驶比例,采用多元回归方法构建一种新型的中观排放模型. 经比对,所建排放模型相对于传统VSP分布排放模型精度更高. 所建模型考虑的新增影响因素均较易获得,故可应用于城市大规模交通路网的排放计算,对提高城市路网排放计算精度,辅助机动车排放控制策略制定具有一定意义.  相似文献   

2.
准确地对机动车排放污染进行量化评估是机动车排放控制策略制定的前提. 为提高模型计算精度,提出低速行驶比例的概念,用于描述车辆在路段上行驶时瞬时速度的分布特征. 在传统的VSP分布排放模型的基础上,纳入更多的中观影响因素,包括路段平均速度、路段长度、道路等级和低速行驶比例,采用多元回归方法构建一种新型的中观排放模型. 经比对,所建排放模型相对于传统VSP分布排放模型精度更高. 所建模型考虑的新增影响因素均较易获得,故可应用于城市大规模交通路网的排放计算,对提高城市路网排放计算精度,辅助机动车排放控制策略制定具有一定意义.  相似文献   

3.
为了探究不同车辆排放对道路空气污染的贡献,以深圳市为例,基于道路运输排放因子手册(Handbook on Emission Factors for Road Transport,HBEFA)求取深圳本地化排放因子,结合深圳市典型道路实测交通流数据,计算该路段每小时CO,NOx平均排放因子和排放强度,以及不同车型机动车对路段CO,NOx的贡献率,并利用加利福尼亚线源扩散模型(California Line Sources Dispersion Model,CALINE4)对道路交通的污染排放进行模拟验证.结果表明:路段CO,NOx每小时单车排放因子分别为(1.04±0.71)g/km和(2.95±2.41)g/km,排放强度分别为(2664.27±1626.20)g/(km·h)和(7017.85±3382.99)g/(km·h),NOx排放强度日夜变化显著;大型货车约占总交通量的41%,其CO,NOx排放因子分别是小型客车的3~9倍和17~24倍,CO,NOx的路段贡献率分别是77.3%和92.9%;大型货车CO,NOx排放标准每提高10%或大型货车占比减少10%,该道路的CO,NOx排放分别减少约7.7%和9.3%.因此,提高大型货车排放标准、降低大型货车比例或是减少道路交通污染的有效途径.  相似文献   

4.
关于路段环境交通容量的探讨   总被引:2,自引:0,他引:2  
本文运用机动车尾气扩散箱型模式建立路段环境交通容量计算模型.考虑满足环境空气质量标准和保证路段的通行能力,主要通过降低机动车污染物排放因子,并得出了相应的计算模型.最后对北京莱路段环境交通容量进行初步计算分析.该模型的提出可为城市规划、交通规划和交通管理决策提供参考.  相似文献   

5.
基于PEMS的MOBILE与COPERT排放模型对比研究   总被引:3,自引:0,他引:3  
为研究符合我国国情的机动车尾气排放宏观模型,本文首先系统地介绍了MOBILE与COPERT模型的算法原理、特点及应用;然后描述了车载尾气检测设备(PEMS)的数据采集及分析方法,并利用车载尾气设备检测的实测数据对两模型进行了参数校正;最后从排放因子和道路等级角度将两模型输出的预测值与实测值进行了对比分析. 结果表明,在测试车辆总行驶周期内以及各道路等级下,COPERT模型的NOx、HC和CO排放因子预测值较MOBILE模型的预测结果与实测值更为接近;在测试车辆总行驶周期内,前者误差比后者分别小19.2%、40.8%和22.0%. 最后得出结论:在预测中国机动车尾气排放时,COPERT模型较MOBILE模型更为适用.  相似文献   

6.
本文利用微观仿真软件(VISSIM)对研究对象进行微观交通流模拟,并将得到的车辆运行状况数据用数据库方式输出,转换后作为综合模式排放模型(CMEM)计算油耗和排放所需要的输入文件。用该方法以南京市太平北路为研究对象,模拟将该路段的最外侧混行车道改造为公交专用道后对交通流及油耗和排放的影响。模拟结果表明:该设置明显改善了公交车的交通流运行情况,并能够有效减少公交车的燃油消耗及尾气排放;但是对整体路段的总体机动车而言,该设置使得路段平均燃油消耗率及HC、CO和NOx的平均排放因子少量增加。  相似文献   

7.
为评估交通管控策略的潜在环境效益,在交通仿真模型中融合微观车辆排放模型,可仿真估计机动车污染物排放特征.论文比较分析了微观车辆排放模型的基本特点,总结了微观车辆排放模型本地化移植的方法与进展;对宏观、中观、微观多层级交通仿真模型融合微观车辆排放模型的方法进行了综述分析.研究发现,宏观及中观交通仿真模型与微观车辆排放模型的融合方法主要体现在机动车污染物排放因子修正及车流运行轨迹重建上.现有研究者对微观交通仿真模型融合微观车辆排放模型是否能够准确地估计机动车污染物排放特征存在分歧,表现在微观交通仿真模型输出的车辆比功率分布特征与观测的真实值存在不一致性.最后讨论了模型融合应用发展的未来研究方向.该综述对交通仿真模型融合微观车辆排放模型的一体化平台设计具有重要参考价值.  相似文献   

8.
城市单向交通规划方案的能效判别法   总被引:1,自引:0,他引:1  
单向交通组织规划改变了车流原有的运行状态,使得路网中各路段的交通流量和行车速度发生变化,车流在规划区域的能源消耗和废气的排放也要发生相应的变化.在已知规划区域节点0D的条件下,假定影响车辆排放因子的其他因素不改变,通过交通仿真获得单向交通规划方案的各路段的交通流量和运行车速,利用能源消耗模型和车辆排放模型,计算出单向交通和双向交通组织状况下的能源消耗和废气排放量,再运用比值法建立了单向交通规划方案的能效判别模型,对单向交通规划方案的能效进行判别.  相似文献   

9.
城市化的快速发展带来道路网络的扩大建设以及机动车的大幅增加,机动车的噪声和尾气排放对城市环境产生较大的压力.城市道路机动车的实时排放空气污染监测及预警的需求越来越受到社会、城市管理及环境管理等部门的关注.文章首先提出系统的总体设计思路和需求描述,并进一步提出系统技术方案,通过海量数据快速处理的解决方案,建立一套由实时交通信息处理分析子系统、道路实时排放清单动态测算子系统、基于道路污染物空气质量预测子系统、机动车空气污染预警处理子系统、机动车实时空气污染预警应用展示子系统等5个子系统组成的机动车实时排放空气污染预警系统,最终通过界面展示系统的各项功能.系统已研发实现并实施和运行,对环境监测和预警起到了重要示范作用.  相似文献   

10.
获取车辆的实际运行工况,是准确进行污染物排放测算的关键工作.以韶山为例,通过调查本地驾驶员和外地驾驶员在不同道路类型上驾驶小客车行驶的逐秒GPS数据,统计分析相应的运行工况分布并导入MOVES模型,采用先按类分解再聚类合计的方法测算污染物排放因子,据此评估交通管理与控制策略对污染物排放的影响.研究发现,采用MOVES默认的运行工况分布,得出的排放结果将会产生较大误差;相对于外地驾驶员,韶山本地驾驶员平均车速更高,车辆比功率分布更离散,运行工况的差别使得本地驾驶员的污染物排放因子在所有道路类型上全部高于外地驾驶员,景区道路上高出更多;韶山实施游客换乘方案后, 2016年8月各污染物总减排比例为73%~78%.  相似文献   

11.
由于混合动力汽车与传统燃油车的能耗排放因子具有差异性,导致机动车交通路网能耗排放的量化评估存在不确定性。本文建立混合动力汽车在实际交通状态中的能耗和CO2排放因子测算模型,基于车辆比功率VSP(Vehicle Specific Power)作为车辆行驶状态与能耗排放之间耦合关系的表征参数。通过引入内燃机转速区分内燃机开启和关闭工作状态,并计算内燃机开启状态下VSP对应的平均能耗率,同时,建立能够解析混合动力汽车能耗排放产生机理的VSP分布。通过收集典型行驶工况下车辆测试油耗数据和北京市车辆实际行驶轨迹数据,验证了模型的准确性,并应用模型测算混合动力汽车不同速度区间下的油耗和CO2排放因子。研究结果表明:在城市行驶工况(UDDS)和高速行驶工况(HWY)中,模型测算能耗排放因子与真实值的平均相对误差分别为3.7%和-1.7%,与不考虑内燃机开启状态相比,测算误差减少5.6%和4.3%;在实际交通状态下,采用传统燃油车的测算方法会导致混合动力汽车行驶平均速度为高速区间时油耗和CO2排放量被低估,当行驶平均速度为低速区间时油耗和CO2排放量会被高估。  相似文献   

12.
道路交通碳排放研究存在核算技术方法不成熟、排放因子本地化路径不明确等问题,影响道路交通移动源碳排放核算精度。对此,基于现有研究界定城市道路交通移动源碳排放的核算概念、核算边界及核算对象,归纳介绍因素分解法、排放系数法、全生命周期评价法三种道路交通移动源碳排放核算方法的核算原理及计算模型。针对排放因子标定研究的不足,以深圳市实践为例,阐述本地化排放因子标定校验的技术方法。通过采集深圳市本地化车辆运行工况,与欧洲HBEFA库的典型工况进行匹配识别;同时基于OPCAS车载移动平台校核排放因子的标定精度。最终确定不同车型、道路条件、排放标准情况下的4 500个排放因子,建成深圳市本地化排放因子库。  相似文献   

13.
为了定量分析事故路段行车风险因素,保障事故现场的安全性,集成DEMATEL-ISM方法对其影响因素进行辨识和分析。首先基于人-车-路(环境)及管理的系统理论,建立事故路段行车风险影响因素集,即驾驶员因素、车辆因素、道路与环境因素和管理因素,具体分为年龄、驾龄和性别等20个因素,然后以Delphi法确定各个影响因素之间的关系。集成DEMATEL-ISM法,建立事故路段行车风险影响因素辨识模型。通过计算可达矩阵,获得影响因素的5层递阶结构模型,即第一层级为驾驶员驾龄、疲劳程度和反应判断能力等6个因素,第二层级为驾驶里程及车辆类型等8个因素,第三层级为驾驶员年龄等3个因素。研究结果为事故路段的安全管理提供理论依据。  相似文献   

14.
交通限速除了在保证交通安全上能起作用之外,在一定程度上也是环境友好型的手段。文章通过定量为主、定性为辅的方式分析了交通限速在公路运输中对排放的影响,并以减排为目标,探讨是否存在最优限速值。研究通过车载尾气检测系统PEMS(Portable Emission Measurement System)进行交通尾气实地采集;基于实测数据,引入车辆比功率的概念,将车辆、道路信息与车辆尾气的排放量联系起来,建立排放模型;并采用交通微观仿真软件VISSIM,对各个研究因素设定不同的仿真场景,进行仿真数据采集,结合本文建立的排放计算模型来定量地分析不同仿真场景下,限速对交通尾气排放的影响。研究发现,无锡S342公路最优限速值分别为80 km/h,75 km/h和75 km/h时,一氧化碳、碳氢化合物和氮氧化合物排放量达到最小。  相似文献   

15.
结合微观仿真元胞自动机模型和机动车排放MOVES模型,以十字信号控制交叉口为仿真对象,研究交叉口信号配时与机动车排放之间的关系.元胞自动机模型将交叉口和路段划分为3.5 m×3.5 m的元胞,每辆车占2 个元胞,交叉口内转弯车辆减速慢行,直行车辆速度不受限制,提高了交通仿真的真实性和机动车排放测算的准确性.仿真结果表明:最佳信号周期随着车辆到达率的增加而增加,使得交叉口通行效率达到最大化;行程时间随着左转车比例的增加而增加,对于不同的车辆到达率,均存在一个极限值,当左转车比例低于该极限值时,行程时间变化不大,高于该极限值时,行程时间快速增加;从通行能力、行程时间和尾气排放的角度,交叉口具有不同的最佳信号周期,且差异较大.  相似文献   

16.
机动车交通的碳排放是城市大气污染的重要来源.城市管理者日益从环境的角度来考虑城市的交通政策,机动车交通排放的测算技术成为开展交通环境研究的基础和前提.研究了机动车交通排放的影响因素,介绍了上海市机动车交通排放模型的算法、参数获取技术和可实现的功能;介绍了上海市机动车交通排放模型的软件实现平台和实现方法,并开展了模型应用和验证工作.  相似文献   

17.
为了从车-路耦合角度客观、直接地识别道路事故多发路段,开发了事故多发路段动力学仿真识别系统,建立了车辆模型、道路模型与车-路耦合模型,提出了事故多发路段识别方法,通过小附着系数路面动力学仿真试验和弯道制动动力学仿真试验进行验证。采用闭环控制方法控制汽车的运行状态,依据道路的特性,选择表征车辆行驶安全性的特征参数,通过特征参数曲线识别事故多发路段。仿真结果表明:在主要考虑道路因素导致事故多发时,所识别出的事故多发路段与依据交警部门事故统计信息所识别出的事故多发路段一致,因此,此系统可行。  相似文献   

18.
结合微观仿真元胞自动机模型和机动车排放MOVES模型,以十字信号控制交叉口为仿真对象,研究交叉口信号配时与机动车排放之间的关系.元胞自动机模型将交叉口和路段划分为3.5 m×3.5 m的元胞,每辆车占2 个元胞,交叉口内转弯车辆减速慢行,直行车辆速度不受限制,提高了交通仿真的真实性和机动车排放测算的准确性.仿真结果表明:最佳信号周期随着车辆到达率的增加而增加,使得交叉口通行效率达到最大化;行程时间随着左转车比例的增加而增加,对于不同的车辆到达率,均存在一个极限值,当左转车比例低于该极限值时,行程时间变化不大,高于该极限值时,行程时间快速增加;从通行能力、行程时间和尾气排放的角度,交叉口具有不同的最佳信号周期,且差异较大.  相似文献   

19.
正建立中国机动车排放因子基础数据库机动车尾气排放是城市大气污染物排放的重要来源,尾气排放因子是计算尾气排放量的关键指标。排放因子受驾驶行为、道路条件、车况、交通流运行状态等多种因素影响,具有典型的地域特征。中国对机动车尾气排放因子  相似文献   

20.
黄宇  张庆 《交通标准化》2014,(24):102-106
为方便交通管理部门及时、准确地了解路网排放情况,采用MOBILE6.2排放模型对北京市机动车的综合排放因子进行了测算。根据北京市气象、地理数据,以及北京市机动车的种类分布、车龄分布、里程分布和累积里程等确定模型所需参数,应用模型计算不同速度下北京市机动车的HC、VOC、CO、NOx、PM综合排放因子。模拟北京市机动车高峰、平峰使用工况,采集单车道路实测排放因子数据,通过实测排放因子修正MOBILE6.2模型参数。修正后模型的排放因子与行车速度之间的关系更接近北京市的实际排放情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号