首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
This paper focuses on the problem of linear track keeping for marine surface vessels. The influence exerted by sea currents on the kinematic equation of ships is considered first. The input-to-state stability(ISS) theory used to verify the system is input-to-state stable. Combining the Nussbaum gain with backstepping techniques,a robust adaptive fuzzy algorithm is presented by employing fuzzy systems as an approximator for unknown nonlinearities in the system. It is proved that the proposed algorithm that guarantees all signals in the closed-loop system are ultimately bounded. Consequently,a ship's linear track-keeping control can be implemented. Simulation results using Dalian Maritime University's ocean-going training ship 'YULONG' are presented to validate the effectiveness of the proposed algorithm.  相似文献   

2.
A ship's tail shaft has serious flexural vibration due to the cantilevered nature of the propeller's blades. Analysis of the nature frequency of flexural vibration is vital to be able to provide effective shock absorption for a ship's tail shaft. A mathematic model of tail shaft flexural vibrations was built using the transfer matrix method. The nature frequency of flexural vibration for an electrically propelled ship's tail shaft was then analyzed, and an effective method for calculating it was proposed: a genetic algorithm (GA), which calculates the nature frequency of vibration of a system. Sample calculations, with comparisons by the Prohl method under conditions bearing isotropic support, showed this method to be practical. It should have significant impact on engineering design theory.  相似文献   

3.
3-D computational method of wave loads on turret moored FPSO tankers   总被引:1,自引:0,他引:1  
A three-dimensional method of calculating wave loads of turret moored FPSO (Floating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring system are calculated according to the catenary theory, which are expressed as the function of linear stiffness coefficients and the displacements of the upper ends of mooring chains. The hydrodynamic coefficients of the ship are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for ships with a low forward speed. The equations of ship motions are established with the effect of the restoring forces from the mooring system included as linear stiffness coefficients. The equations of motions are solved in frequency domain, and the responses of wave-induced motions and loads on the ship can be obtained. A computer program based on this method has been developed, and some calculation examples are illustrated. Analysis results show that the method can give satisfying prediction of wave loads.  相似文献   

4.
In order to provide a theoretical guide for choosing the material for the hawsers for the FPSO side-by-side offloading system, which is moored by the yoke system, the 3D potential flow theory and full coupled time-domain analysis are presented to study the dynamic response of the offloading system. The MingZhu FPSO offloading system in the field BZ25-1 is simulated here; and four different characteristic fiber ropes are used as the material for the hawsers. To acquire an accurate hawser line tension, the polynomial fitting method is used to calculate the nonlinear stiffness of the hawsers. By comparing the hawser lines' tension and the relative motion between the FPSO and the shuttle tanker, a suitable material for the hawser lines is chosen and discussed in this paper. The results indicate that the nonlinear stiffness characteristic of the fiber rope has a small effect on the relative motion of the vessels, but the hawser lines' tension is greatly influenced by the different characteristics of the fiber ropes. The hawser lines' tension with nonlinear stiffness is in accordance with the one with the upper and lower bound linear stiffness, which proves this method of fitting the fiber ropes' nonlinear stiffness is reasonable and reliable.  相似文献   

5.
In this paper, the reduced-order modeling (ROM) technology and its corresponding linear theory are expanded from the linear dynamic system to the nonlinear one, and H∞ control theory is employed in the frequency domain to design some nonlinear system' s pre-compensator in some special way. The adaptive model inverse control (AMIC)theory coping with nonlinear system is improved as well. Such is the model reference adaptive inverse control with pre-compensator (PCMRAIC). The aim of that algorithm is to construct a strategy of control as a whole. As a practical example of the application, the nunlerical simulation has been given on matlab software packages. The numerical result is given. The proposed strategy realizes the linearization control of nonlinear dynamic system. And it carries out a good performance to deal with the nonlinear system.  相似文献   

6.
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.  相似文献   

7.
The problem of ship hull plate processing surface fairing with constraints based on B-spline is solved in this paper. The algorithm for B-spline curve fairing with constraints is one of the most common methods in plane curve fairing. The algorithm can be applied to global and local curve fairing. It can constrain the perturbation range of the control points and the shape variation of the curve, and get a better fairing result in plane curves. In this paper, a new fairing algorithm with constraints for curves and surfaces in space is presented. Then this method is applied to the experiments of ship hull plate processing surface. Finally numerical results are obtained to show the efficiency of this method.  相似文献   

8.
Underwater image bidirectional matching for localization based on SIFT   总被引:1,自引:0,他引:1  
For the purpose of identifying the stern of the SWATH (Small Waterplane Area Twin Hull) availably and perfecting the detection technique of the SWATH ship's performance, this paper presents a novel bidirectional image registration strategy and mosaicing technique based on the scale invariant feature transform (SIFT) algorithm. The proposed method can help us observe the stern with a great visual angle for analyzing the performance of the control fins of the SWATH. SIFT is one of the most effective local features of the scale, rotation and illumination invariant. However, there are a few false match rates in this algorithm. In terms of underwater machine vision, only by acquiring an accurate match rate can we find an underwater robot rapidly and identify the location of the object. Therefore, firstly, the selection of the match ratio principle is put forward in this paper; secondly, some advantages of the bidirectional registration algorithm are concluded by analyzing the characteristics of the unidirectional matching method. Finally, an automatic underwater image splicing method is proposed on the basis of fixed dimension, and then the edge of the image's overlapping section is merged by the principal components analysis algorithm. The experimental results achieve a better registration and smooth mosaicing effect, demonstrating that the proposed method is effective.  相似文献   

9.
In the normal operation condition, a conventional square-root cubature Kalman filter (SRCKF) gives sufficiently good estimation results. However, if the measurements are not reliable, the SRCKF may give inaccurate results and diverges by time. This study introduces an adaptive SRCKF algorithm with the filter gain correction for the case of measurement malfunctions. By proposing a switching criterion, an optimal filter is selected from the adaptive and conventional SRCKF according to the measurement quality. A subsystem soft fault detection algorithm is built with the filter residual. Utilizing a clear subsystem fault coefficient, the faulty subsystem is isolated as a result of the system reconstruction. In order to improve the performance of the multi-sensor system, a hybrid fusion algorithm is presented based on the adaptive SRCKF. The state and error covariance matrix are also predicted by the priori fusion estimates, and are updated by the predicted and estimated information of subsystems. The proposed algorithms were applied to the vessel dynamic positioning system simulation. They were compared with normal SRCKF and local estimation weighted fusion algorithm. The simulation results show that the presented adaptive SRCKF improves the robustness of subsystem filtering, and the hybrid fusion algorithm has the better performance. The simulation verifies the effectiveness of the proposed algorithms.  相似文献   

10.
11.
Research on the fully fuzzy time-cost trade-off based on genetic algorithms   总被引:2,自引:0,他引:2  
It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.  相似文献   

12.
[Objective]Aiming at the problem of too many influencing factors and too little reference data for determining the dimensions of medium-sized cruise ships in the concept phase, a simplified multi-objective optimization method based on the fitting of dimensions and performance is proposed. [Method]First, the dimension relations of medium-sized cruise ships are analyzed and the influence of the latest SOLAS requirements used to determine the optimization range. Second, the influence of cruise ship dimensions on space, resistance, stability and seakeeping are analyzed. Next, based on the principles of genetic algorithms, a multiobjective optimization algorithm with high robustness and high engineering adaptability is determined to establish a multi-objective optimization model for the concept design of medium-sized cruise ships. Finally, the Pareto solution obtained by multi-objective optimization is analyzed to provide initial references for determining the dimensions of the target cruise ship. [Results]Implemented via a genetic algorithm, the optimization program proposed herein is applied in the concept design of a medium-sized cruise ship in order to optimize the initial dimensions, thereby achieving the expected outcome of providing reasonable initial dimensions for cruise ship design. [Conclusion ] The proposed simplified multi-objective optimization model can provide feasible initial dimensions for medium-sized cruise ships in the concept phase. As the Pareto solution obtained by multi-objective optimization has different focuses such as resistance and stability, the most suitable solution needs to be selected according to the design object. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

13.
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm(MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.  相似文献   

14.
This paper studies the algorithm of the adaptive grid and fuzzy interacting multiple model (AGFIMM) for maneuvering target tracking, while focusing on the problems of the fixed structure multiple model (FSMM) algorithm's cost-efficiency ratio being not high and the Markov transition probability of the interacting multiple model (IMM) algorithm being difficult to determine exactly. This algorithm realizes the adaptive model set by adaptive grid adjustment, and obtains each model matching degree in the model set by fuzzy logic inference. The simulation results show that the AGFIMM algorithm can effectively improve the accuracy and cost-efficiency ratio of the multiple model algorithm, and as a result is suitable for enineering apolications.  相似文献   

15.
一种基于PSO优化HWFCM的快速水下图像分割算法   总被引:3,自引:0,他引:3  
The S/N of an underwater image is low and has a fuzzy edge.If using traditional methods to process it directly,the result is not satisfying.Though the traditional fuzzy C-means algorithm can sometimes divide the image into object and background,its time-consuming computation is often an obstacle.The mission of the vision system of an autonomous underwater vehicle (AUV) is to rapidly and exactly deal with the information about the object in a complex environment for the AUV to use the obtained result to execute the next task.So,by using the statistical characteristics of the gray image histogram,a fast and effective fuzzy C-means underwater image segmentation algorithm was presented.With the weighted histogram modifying the fuzzy membership,the above algorithm can not only cut down on a large amount of data processing and storage during the computation process compared with the traditional algorithm,so as to speed up the efficiency of the segmentation,but also improve the quality of underwater image segmentation.Finally,particle swarm optimization (PSO) described by the sine function was introduced to the algorithm mentioned above.It made up for the shortcomings that the FCM algorithm can not get the global optimal solution.Thus,on the one hand,it considers the global impact and achieves the local optimal solution,and on the other hand,further greatly increases the computing speed.Experimental results indicate that the novel algorithm can reach a better segmentation quality and the processing time of each image is reduced.They enhance efficiency and satisfy the requirements of a highly effective,real-time AUV.  相似文献   

16.
Having carried out investigations on ship collision accidents with bridges in waterway in China, a database of ship collision with bridge (SCB) is developed in this paper. It includes detailed information about more than 200 accidents near ship' s waterways in the last four decades, in which ships collided with the bridges. Based on the information a statistical analysis is presented tentatively. The increase in frequency of ship collision with bridges appears, and the accident quantity of the barge system is more than that of single ship. The main reason of all the factors for ship collision with bridge is the human errors, which takes up 70%. The quantity of the accidents happened during flooding period shows over 3 - 6 times compared with the period from March to June in a year. The probability follows the normal distribution according to statistical analysis. Visibility, span between piers also have an effect on the frequency of the accidents.  相似文献   

17.
This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship’s resistance through an air-cavity. On the basis of potential theory and on the assumption of an ideal and irrotational fluid, this paper drives a method for calculating air cavity formation using slender ship theory then points out the parameters directly related to the formation of air cavities and their interrelationships. Simulations showed that the formation of an air cavity is affected by cavitation number, velocity, groove geometry and groove size. When the ship’s velocity and groove structure are given, the cavitation number must be within range to form a steady air cavity. The interface between air and water forms a wave shape and could be adjusted by an air injection system.  相似文献   

18.
[Objective]This paper proposes a fuzzy sliding mode controller based on T-S fuzzy logic for the vertical plane motion control of an autonomous underwater glider (AUG) with limited actuator capability. [Methods]In the fuzzy sliding mode controller, the fuzzy switching rate is used to replace the switching rate in the fixed time controller to effectively suppress buffeting. The fuzzy switching rate is obtained by fitting the switching rate of the fixed time controller with T-S fuzzy rules. Based on the limited capabilities of AUG actuators, a saturation auxiliary system is designed to improve the actuator saturation effect. Finally, the performance of the system is verified by Lyapunov stability analysis and numerical simulation. [Results]The results show that the AUG under the fuzzy sliding mode controller and the saturation auxiliary system can converge in finite time. The effectiveness of the fuzzy sliding mode controller and the saturation auxiliary system are verified by numerical simulation. [Conclusions]By making comparisons with the fixed-time controller, it is verified that the two controllers have similar control performance, and the buffeting of the fuzzy sliding mode controller is lesser. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

19.
The problem of stabilization control of underactuated surface vessels with two independent control inputs is in vestigated inthis paper. Through transformation, a cascade property of the system is revealed. And the original nonlinear system could be divided into two subsystems: a linear subsystem and a nonlinear subsystem. The stabilization laws are derived for the two subsystems separately. A smooth time - varying feedback stabilization law with exponentially convergence rate is obtained. The proposed stabilization law guarantees all the system states converge to the equilibrium exponentially. The aim of stabilization control of underactuated surface vessels is achieved. At last, the effectiveness of the proposed algorithm is illustrated by simulation tests.  相似文献   

20.
The objective of this work is the analytical synthesis problem for marine vehicles autopilots design. Despite numerous known methods for a solution, the mentioned problem is very complicated due to the presence of an extensive population of certain dynamical conditions, requirements and restrictions, which must be satisfied by the appropriate choice of a steering control law. The aim of this paper is to simplify the procedure of the synthesis, providing accurate steering with desirable dynamics of the control system. The approach proposed here is based on the usage of a special unified multipurpose control law structure that allows decoupling a synthesis into simpler particular optimization problems. In particular, this structure includes a dynamical corrector to support the desirable features for the vehicle's motion under the action of sea wave disturbances. As a result, a specialized new method for the corrector design is proposed to provide an accurate steering or a trade-off between accurate steering and economical steering of the ship. This method guaranties a certain flexibility of the control law with respect to an actual environment of the sailing;its corresponding turning can be realized in real time onboard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号