首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
磁流变阻尼器力学模型及控制电流逆模型对半主动控制系统的控制精度具有重要影响.采用正弦及余弦型魔术公式,基于骨架曲线与滞回分离的建模方法,建立改进的磁流变阻尼器动态阻尼力模型;采用基于Sobol序列的差分-禁忌混合优化算法对阻尼力模型进行参数识别,构建包含激励特性及控制电流参数的通用数学模型;在试验测试及正向模型基础上,利用自适应神经模糊系统建立阻尼器控制电流逆模型.研究结果表明:本文建立的正逆模型均能够有效表征磁流变阻尼器的非线性行为及滞回特性;改进魔术公式模型在不同激励特性及电流工况下的平均百分比误差在3.4%附近变化;逆向动力学模型计算的控制电流误差均方根值为0.086 9~0.1171 A;经过控制电流逆模型与阻尼器正向模型串联模型计算的预测阻尼力误差均方根值为阻尼器最大阻尼力的5.6%;通过试验测试与仿真结果对比,验证了本文提出的阻尼器数学模型具有较好的精度和适用性,能够改善座椅悬架系统振动传递特性.  相似文献   

2.
磁流变阻尼器是一种阻尼可控器件,通过调节励磁线圈中的电流可以灵活改变磁流变液的流变特性,从而改变阻尼器的阻尼力。指出了振动半主动控制对阻尼器及其控制系统动态响应要求,分析了阻尼器响应时间的影响因素,设计了响应时间试验系统。经测试。阻尼器连同控制系统具有响应速度快、输出精度高等特点,能满足一定频率范围的半主动实时控制要求。  相似文献   

3.
针对设计制造的基于混合工作模式的单级磁路与双级磁路磁流变减振器,在伺服试验台上对所设计制造的减振器进行了试验研究。分析了两种结构的磁流变减振器在不同激励电流的作用下示功特性曲线的特点及速度特性曲线特点。试验表明:双级磁路活塞减振器阻尼力变化范围更大,比同样结构的单级磁路活塞减振器性能更为优越,为磁流变减振器的进一步优化设计提供了依据。  相似文献   

4.
磁流变阻尼器用于结构减振的控制策略研究   总被引:3,自引:0,他引:3  
基于Bingham恢复力模型,对磁流变阻尼器用于结构减振的控制策略进行了探讨.根据磁流变液体阻尼器连续可调的特性,建立了一种改进控制策略的数学模型,并给出了它的简化求解方法.为了验证所建议控制策略的有效性,编制计算程序对一工程实例进行了仿真.结果表明,所建议的控制策略有更好的控制效果,具有较好的稳定性.  相似文献   

5.
微型汽车悬架系统磁流变减振器研究   总被引:2,自引:1,他引:2  
利用磁流变液流变特性随外加磁场的变化而变化的智能特性.以磁流变液阻尼器件工作模式为基础,详细介绍了磁流变减振器的设计原理以及对实际磁流变减振器的实验.调节激励电流可调节磁流变减振器的阻尼力,而且磁流变减振器功耗和噪声小.为防止压缩时出现无阻尼空行产生冲击,在磁流变减振器中必须加入补偿措施.实验结果表明,磁流变减振器功耗低,噪音小.  相似文献   

6.
研究了基于磁流变阻尼器的铁道车辆半主动悬挂系统的控制方法,建立了50自由度的车辆多体动力学模型和磁流变阻尼器的Spencer模型。运用模糊控制方法设计了基于车体加速度和速度反馈的模糊控制器,利用电压控制函数和滞回特性分离法建立了磁流变阻尼器的逆模型,用于预测控制电流。采用数值仿真方法研究了基于磁流变阻尼器的模糊半主动悬挂系统的特性,分析了装用半主动悬挂系统车辆的动力学性能。仿真结果表明:采用基于逆模型的模糊控制方法,阻尼器实际阻尼力能有效跟踪控制系统的期望阻尼力。相对于被动悬挂,基于磁流变阻尼器的模糊半主动悬挂系统能够有效地减小车体1~10 Hz范围内的振动,改善车辆的运行平稳性。当车辆运行速度为250 km·h-1时,振动加速度减小53.3%。当车辆运行速度为100~300 km·h-1时,车辆运行平稳性指标改善率为6%~9%。  相似文献   

7.
在对磁流变阻尼器的结构特点和材料选择原则分析的基础上,设计制作了磁流变阻尼器,计算了阻尼器的磁通量等参数.制定了试验方案.采用磁流变阻尼器作为被动控制器件,以拉索为试验对象,进行了磁流变阻尼器在人工激振下的试验和简谐激振下的试验,给出了试验结果.并探讨了阻尼器在不同电流输入时的减振效果,研究了不同索力和不同电流输入时磁流变阻尼器对拉索模态频率的影响.  相似文献   

8.
介绍了对磁流变阻尼器的特性试验和将阻尼器用于隔振系统的被动与半主动控制试验。试验结果表明,阻尼力与速度之间复杂滞后环与位移激励频率、幅值和励磁电流密切相关,并呈现出一定的变化规律;被动隔振效果随励磁电流变化规律类似线性阻尼的情形,并且有调节刚度的效应;半主动控制在系统共振点附近的隔振效果优于被动隔振,但在较高频段没有优势;半主动隔振数控采样频率越低,隔振效果越差,在高频段效果劣化较明显。  相似文献   

9.
磁流变减振座椅模糊控制器的设计与仿真   总被引:2,自引:0,他引:2  
采用半主动控制理论和方法,建立了座椅可控磁流变阻尼非线性控制系统的数学模型。采用模糊控制策略设计了控制器,实现阻尼力的连续控制,从而改善座椅的动态特性,提高乘座舒适性。对系统进行了模拟仿真,结果表明减振效果良好,具有实用价值。  相似文献   

10.
应用神经网络技术建立了磁流变阻尼器的逆向模型,该模型含有4个输入神经元、1个输出神经元和15个隐层神经元.利用Bouc—Wen修正模型数值仿真生成数据,然后采用Levenberg—Marquardt法和OBS策略对逆向模型的结构进行训练和修剪.最后,将所建的磁流变阻尼器逆向模型应用于1/4车悬挂模型中,进行半主动控制的仿真分析.结果表明,所建立和优化的逆向模型可以较好地预测所需电流指令,应用于半主动控制中的效果明显.  相似文献   

11.
应用Bingham本构力学模型, 得到了磁流变阻尼器(MRD) 的结构尺寸参数(缸体内径、活塞直径、活塞杆直径、活塞有效长度)、线圈匝数和磁流变液表观黏度与输出阻尼力的关系, 利用力学模型分析了MRD的6个参数对输出阻尼力和动态范围的影响; 建立了基于MRD的半主动座椅悬架系统模型, 以驾驶人加速度和座椅软垫动行程的均方根作为减振效果的评价指标, 采用百分比斜率均方根评价MRD参数的影响程度; 结合Bingham本构力学逆模型, 分析了MRD的6个参数对减振效果的影响及MRD磨损对减振效果的影响。分析结果表明: 活塞直径对驾驶人加速度和座椅软垫动行程的影响因子分别为4.83、5.46, 缸体内径的影响因子分别为4.45、4.75, 线圈匝数的影响因子分别为0.61、0.67, 活塞杆直径的影响因子分别为0.53、0.59, 活塞有效长度的影响因子分别为0.51与0.56, 因此, 活塞直径对减振效果的影响最大, 其次为缸体内径, 随后依次为线圈匝数、活塞杆直径与活塞有效长度, 而磁流变液表观黏度对减振效果几乎没有影响; 为了获得较好的减振效果, 应使MRD的最大输出阻尼力与动态范围足够大。   相似文献   

12.
节流阀结构是影响减振器阻尼特性的主要因素,为了得到其结构参数,作者建立了高速列车二系横向减振器内流场的仿真模型。利用计算流体力学的方法分析减振器内部三维动态流场,得到节流阀阻尼孔的尺寸以及开阀阻尼力和开阀速度,并分析了开阀速度和油液温度对减振器阻尼特性的影响。计算结果表明:调节节流阀参数可以得到满足减振器性能要求的阻尼特性;高温时减振器阻尼力减小的两个主要因素是节流阀片易开启以及油液动力黏度降低;开阀速度极小的改变会引起减振器阻尼力发生较大的变化。  相似文献   

13.
为克服参数敏感性分析方法在研究液体黏滞阻尼器最优阻尼参数时计算工作量大、分析效率低的缺点,利用随机振动理论推导了桥梁上部结构振动系统的理论最优阻尼比,得到了线性液体黏滞阻尼器最优阻尼系数的解析表达式.采用能量等效原理,进一步推导了非线性液体粘滞阻尼器的最优阻尼系数的解析表达式.以某连续梁桥为例,采用动力时程法分析了参数的敏感性.分析结果表明:桥梁用线性液体粘滞阻尼器存在理论上的最优阻尼比0.5,其对应的阻尼系数可以使阻尼器的减震效率达到最大值.与线性阻尼器相比,非线性阻尼器的最优阻尼系数和最优阻尼力分别降低了55%~67%及16%~22%.   相似文献   

14.
针对航天器中一些部件具有频率低、位移小、加速度小的振动特征,设计了专门的实验台,研究了一种结构简单的磁性液体阻尼减振器.在减振过程中,该磁性液体阻尼减振器的能量主要通过摩擦和永磁铁吸附磁性液体的弹性变形来耗散.根据能量耗散机理,通过实验研究分析了磁性液体的种类、体积及永磁铁的形状等因素对磁性液体阻尼减振器减振效果的影响.研究结果表明,在煤油基磁性液体中,柱状磁铁的减振时间随着磁性液体体积的增加而减少;环状磁铁的减振时间随磁性液体体积的增加而减少;在机油基磁性液体中,柱状磁铁的减振时间随着磁性液体体积的增加而增加,环状磁铁的减振时间随着磁性液体体积的增加而减少.  相似文献   

15.
减振器卸荷特性对2B0动力车动力学性能的影响   总被引:2,自引:0,他引:2  
为了进一步改善动力车的动力学性能,利用多刚体动力学软件SIMPACK,采用轨道随机不平顺非线性时域响应分析方法,对完整的2B0动力车动力学模型进行了计算分析。结果表明:2B0动力车二系横向减振器和一系、二系垂向减振器的最优阻尼值通常是一定的,但是通过增大卸荷速度可以降低平稳性对卸荷阻力改变的敏感程度,从而保证使用中动力车平稳性能的稳定,对于采用二系高挠螺旋弹簧的动力车,二系横向止挡间隙与二系横向减振器阻力特性的合理匹配是获得良好的动态曲线通过性能的一个重要因素。  相似文献   

16.
横向减振器对机车平稳性能的影响   总被引:7,自引:3,他引:7  
基于机车车辆-轨道耦合动力学理论,运用TTISIM(Train/Track Interaction Simulation)仿真软件,以横向减振器为研究对象,以机车运行平稳性指标为依据,系统分析了机车横向减振器的阻尼参数、工作状态、卸荷速度和悬挂位置等参数对于机车平稳性能的影响。仿真计算与分析结果表明:选取适当横向减振器的结构阻尼参数,对提高机车的平稳性有利;采取适当的减振器卸荷速度可以达到提高乘车舒适性的目的;横向减振器是否正常工作对机车的运行品质有较大影响,必须严格确保所有减振器的正常工作;横向减振器的悬挂位置,对于车体的运行平稳性几乎没有影响。  相似文献   

17.
为进一步改善横向互联空气悬架车辆的行驶平顺性和操纵稳定性, 基于多智能体理论和合作博弈Shapley值原理构建多智能体减振器控制系统; 多智能体减振器控制系统由信息发布智能体、平顺性智能体、操稳性智能体和博弈协调智能体组成, 其中信息发布智能体从环境中获取车辆状态信息, 根据下层智能体的信息需求传递信息, 平顺性智能体接收悬架动行程及其变化率信息, 根据平顺性控制要求, 输出自身的阻尼系数意图, 操稳性智能体接收当前互联状态信息触发对应的推理模块, 根据车身侧倾角信息求解需求的阻尼系数, 其中推理模块是通过对遗传算法优化出的阻尼系数进行模糊神经网络自学习形成的, 博弈协调智能体接收平顺性智能体与操稳性智能体的阻尼意图, 根据自身的合作博弈规则, 对阻尼意图进行修正, 输出全局最优阻尼系数; 在不同互联状态、不同激励条件下进行空气悬架静、动态特性试验研究, 并将试验结果与仿真结果进行对比, 验证仿真模型的准确性; 在混合工况下, 利用整车仿真模型验证多智能体减振器控制系统的可行性和有效性。研究结果表明: 和传统减振器阻尼控制系统相比, 多智能体减振器控制系统能有效地使簧载质量加速度均方根值降低14.95%, 悬架动行程均方根值降低10.64%, 车身侧倾角均方根值降低12.33%。提出的多智能体减振器控制系统改善了车辆行驶平顺性和乘坐舒适性, 并且能够抑制车身的侧倾, 提高整车的操纵稳定性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号