首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
车辆换算系数是道路通行能力研究的重要组成部分,合流区内的车辆运行特性与基本路段有着显著差异,其车辆换算系数也应和基本路段有所差异。通过对实测交通流数据的处理分析,以车辆瞬时占用道路时间和车身长度为指标进行聚类,将高速公路合流区车型划分为4种,进一步计算了4种车型之间所形成的16种车头时距,并以车头时距为基础推导了车辆换算系数的计算模型,根据实测数据计算得出了高速公路合流区各车型车辆换算系数。采用饱和车头时距法和流量车速法分别对得到的车辆换算系数进行了验证,结果表明,计算的车辆换算系数具有一定的实用性。  相似文献   

2.
以运行车辆为质点,提出采用汽车道路作用空间的物理分析方法来研究车辆当量系数换算问题。建立了车辆道路作用空间模型,通过大量试验数据分析和应用随机场论的分析方法,研究确定了汽车在运行过程中所表现出的横向、纵向道路作用空间特性以及与道路、交通和车型等相关因素的定量数值,并由此推算出了基本车辆当量换算系数,和基于不同公路服务水平条件下的车辆当量换算系数。  相似文献   

3.
大型车占混合交通流较大比重时,现有车辆换算系数和大型车对通行能力的影响系数不能适用。本研究对大型车为主的城市道路通行能力进行了探讨,利用跟车模型,对纯小客车车流和纯大型车车流通行能力进行分析。结果表明,对于主干路以下级别城市道路,大型车换算系数规范所取的2~3偏大;根据行车速度,按纯小客车车流和纯大型车车流的通行能力比值来选取大型车换算系数更加合理;当大型车比例大于0.7时,可以用相应的的混合流量通行能力来代表。  相似文献   

4.
车辆换算系数是通行能力研究中的重要参数,文章在分析国内外车辆换算系数的基上,采用微观分析方法,提出了一种基于道路时空资源的汽车当量换算的新方法。文章认为公路具有一定的时间和空间资源属性,并根据不同车辆对时空资源的占用来进行汽车的当量换算,并利用实测数据对模型参数进行标定。  相似文献   

5.
双倍视距交通流模型大多未考虑本车与近邻车型的影响.而实际道路交通一般是由不同类型的车辆构成的,为了准确地模拟实际车流之间的相互作用,在分析道路中车辆类型和驾驶员视距关系的基础上,提出基于近邻车型的元胞自动机交通流模型,设计了相应的跟车规则,并对该模型加以实现以分析车辆的行驶特性.模拟结果表明,与只考虑同一种车型的双倍视距元胞自动机交通流模型相比,当道路中不同车辆类型的车辆、数目比较接近时,本文所提出的模型在一定程度上提高了车流的运行速度,提高了通行能力,同时也提高了驾驶的安全系数.  相似文献   

6.
复杂山地线形和道路冰雪路面结合条件下的安全车速设置及通行能力保障是交通管理面临的新挑战。针对北京冬奥会延庆赛区复杂山地道路冰雪路面场景,建立了安全车速与道路线形设计及路面附着系数之间的关系,以安全车速为依据得到了不同路面条件下山地道路的通行能力。依据道路平曲线、竖曲线和横断面数据建立了山地道路三维空间模型;分析了车辆在山地道路平纵组合路段的受力情况,构建了车辆安全行驶速度与圆曲线半径、道路超高、纵坡坡度和路面附着系数的关系模型,并分析了基于安全车速模型的道路通行能力。为了验证模型,选取2种常见的冰雪路面状况和2种常用的车辆类型,获得不同条件下山地道路冰雪路面的安全车速。采用VISSIM软件设计了20种仿真场景,结合道路实测数据验证了安全车速模型的对山地道路冰雪路面车辆安全行驶的提升作用。实测与结果表明:相比全程单一限速模型,所建立的安全车速模型在冰膜路面的行程时间缩短了约38%(小汽车)和32%(大客车),雪板路面的行程时间缩短了约26%(小汽车)和24%(大客车)。山地道路交通流量存在1个自由流到饱和流的相变过程,冰膜路面小汽车下行最大交通量为241辆/h(单向行驶)和231辆/h(双向行驶),大客车下行最大交通量为227辆/h(单向行驶)和222辆/h(双向行驶);雪板路面小汽车下行最大交通量为319辆/h(单向行驶)和249辆/h(双向行驶),大客车下行最大交通量为301辆/h(单向行驶)和236辆/h(双向行驶)。   相似文献   

7.
道路运行车辆在不同交通运行状态下所占有的道路时空资源的物理意义不同,为了科学反映其动态特性,吸取了传统交通流理论的学术思想,选择交通密集度作为车型换算系数的计算标准,综合分析了不同交通流运行状态下车辆占有车道空间问题,从交通流特性分析入手,定性分析车型对交通流量-密集度的影响,提出了不同车型相对应的影响系数计算方法,进而建立基于需求安全距离的动态车辆换算系数定量模型.通过数据验证和试验对比分析结果显示,动态车辆换算系数更好地反映了交通流运行中的速度-流量关系和动态特性.  相似文献   

8.
对城市快速路可变限速控制策略的理论基础进行了研究.在对快速路上的主线车速、进出口匝道车速、分流点合流点车速的特性及速度分布特性进行深入分析的基础上,建立了快速路主线车速-密度动态关系模型,提出考虑出口匝道、不良天气以及道路线形因素下基于安全性的3种主线车速的约束条件.利用积分调节器建立了入口匝道控制模型;提出了基于道路服务流量、行程时间、入口匝道平均等待时间以及行程时间延误4种可变限速的目标函数,利用4种目标函数的线性组合建立了3种系统最优问题,即:低密度状态下路段通行能力最大,行程时间最短;中密度状态下路段通行能力最大,入口匝道平均等待时间最短;以及高密度状态下入口匝道平均等待时间最短,主线车流行程时间延误最短.利用VISSIM仿真模拟手段对可变限速控制模型进行分析,得到可变限速控制策略下与未采取控制策略下的交通流参数结果,验证了可变限速控制策略的有效性.  相似文献   

9.
公路收费口通行能力研究   总被引:5,自引:0,他引:5  
对公路收费口交通流特性及车辆延误进行分析,研究了公路收费口车辆当量系数换算方法,在此基础上,采用延误-流量曲线分析法确定公路收费口服务水平并进而得出收费口的通行能力。  相似文献   

10.
该文在大量观测数据分析与研究基础上,利用随机场论和数理统计结果,提出了道路空间机理特性和相关概念,并建立了三维数学模型,以此确定了车辆运行过程中道路纵向和横向特性以及基于不同公路服务水平条件下车辆当量换算系数。为我国交通专业技术标准制定,通行能力分析和研究提供了参考依据。  相似文献   

11.
为了提升车辆的安全性和能量利用率,从路径规划的层面出发,针对避免车辆遇到极端工况及低效率工况的问题,提出将车辆稳定性判据模型和交通流模型相结合的方法来规划车辆路径,使得车辆在路面湿滑情况下实现快速、安全的行驶。使用交通流模型预测车辆未来将要面临的交通环境变化,再使用稳定性判据模型评估未来交通的安全性,以便为混合动力车辆规划出最快且最安全的路径。具体来讲,为了预测混合动力车辆未来将要面临的车速及车流密度的变化,使用通量矢量分裂格式求解广义Aw-Rascle-Zhang(GARZ)宏观交通流模型。此外,使用驾驶人在环仿真平台PreScan,收集了同一驾驶人在不同车速及不同相对前车距离时给出的前轮转向角响应。基于前轮驱动(FWD)前轮转向(FWS)车辆和全轮转向(AWS)分布式驱动车辆(DDV)的Simulink模型,给出了不同前轮转向角对应的轮胎力饱和因子(δTFSC)响应。使用人工神经网络训练不同车速和车流密度对应的δTFSC,建立了车辆的稳定性判据模型。使用新建立的稳定性判据模型对交通流模型预测的参数(车流速及车流密度)进行稳定性评估。然后,基于以上的方法优化了车辆行驶路径,以确保车辆在湿滑路面上的行驶安全。最后,使用US-101真实交通流数据来验证交通流模型的预测结果。经实例验证得出:交通流模型与车辆横向稳定性判据模型相结合可以从路径规划的层面保证车辆安全行驶并提升交通系统的通行效率。  相似文献   

12.
秦严严  王昊  王炜 《中国公路学报》2018,31(11):147-156
LWR(Lighthill,Whitham and Richards,LWR)模型可推演交通流宏观状态演化过程,在智能网联环境下混有协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆混合交通流LWR模型的研究,可为该混合交通流的宏观动力学特性分析提供理论工具。应用加州伯克利PATH真车试验验证的CACC模型作为CACC车辆跟驰模型,采用智能驾驶人模型(Intelligent Driver Model,IDM)模拟驾驶人在智能网联环境中的"智能"驾驶特性。基于不同CACC车辆比例下的混合交通流基本图,证明混合交通流基本图的切线斜率为交通波在混合车队中传播的波速,建立混合交通流LWR模型的一般性解析框架,得到混有CACC车辆的混合交通流LWR模型。最后,针对LWR模型冲击波特性,在6组平衡态条件下进行数值仿真试验。研究结果表明:所建立的混合交通流LWR模型可较好地描述不同CACC车辆比例时冲击波在混合车队中的传播波速;冲击波波速理论值与仿真均值的相对误差基本控制在10%以内,当冲击波处于由正向波转变为反向波的过渡阶段时,相对误差较大,为19%~26%,但绝对误差仍然较小。研究结果一方面可为混有CACC车辆的交通流宏观状态演化提供理论参考,具有推动该混合交通流其他宏观模型研究进展的积极作用;另一方面,建立的混合交通流LWR模型解析框架能够适应CACC车辆与人工-网联车辆跟驰模型选取的多样性,同时可为其他类型混合交通流LWR模型的建立提供理论支撑。  相似文献   

13.
研究基于对VISSIM仿真模型参数系统地校核与标定,遵循动态空间理念,凭借仿真演示分析了各类车辆对交通流的影响程度,提取VISSIM仿真MOEs数据库中的车辆记录资料,应用车头时距法对当量系数进行了统计分析。研究表明,各种车型的当量系数与运行条件如车道数、限制速度、交通流量等存在一定的相关性,是车辆性能、道路条件、交通组成、交通管制措施和超车选择行为、超车机会等方面的协同作用的集中体现,其值的确定原则上不具有普适性,应该基于特定条件下进行针对性分析,以期科学合理地确定拟建道路的建设规模与道路等级。  相似文献   

14.
信号交叉口右转机动车与行人和非机动车冲突研究   总被引:1,自引:1,他引:0  
研究的主要内容为:未设置右转专用相位的信号灯控制道路交叉口右转机动车流与行人和非机动车的冲突行为,包括冲突数据的采集和提取、右转车流受到干扰前后速度与过街时间对比分析以及机非冲突速度-距离模型。以现实交通数据为基础,通过软件提取右转机动车与行人和非机动车冲突数据,建立标准统一的冲突数据库,以此为基础对比分析右转车流正常行驶状态和受到干扰情况下通过道路交叉口时的车速和过街时间,并建立右转车辆距离机非冲突点不同位置时所对应不同速度的统计模型。研究结果对右转专用相位设立标准的建立和相应信号配时方案的设计具有一定的工程指导意义。  相似文献   

15.
公路上发生短时交通事件时,会对公路上的交通流产生干扰。利用元胞自动机(cellular au-tomata,CA)建立单向双车道高速公路模型。通过CA对发生短时交通事件后的区域进行划分,提出事件下游区域、核心区域、上游区域的CA模型,并构建焦虑换道、急切换道、理性换道规则。最后用MATLAB软件对短时交通事件干扰下的高速公路交通流进行仿真。结果表明,在低、高密度交通流的情况下,相同事件对交通流的干扰存在一定差异,在排队时间、最大排队长队、平均排队长度上均有所不同。  相似文献   

16.
随着世界范围内对自动驾驶汽车及其相关产业发展的高度重视,自动驾驶车辆上路已成为重点领域协同创新、构建未来交通系统的重要载体。本文主要研究自动驾驶车辆不同渗透率参与的混合交通流受场景天气条件的耦合影响因素下的复杂车辆行为逻辑分析,影响机理解析,跟驰模型及通行能力模型构建等。最后我们通过SUMO仿真实验对模型进行嵌套及分析,以期对自动驾驶汽车在测试及上路引导中起到重要理论决策依据。  相似文献   

17.
为分析高速公路隧道与互通出口小净距路段在不同交通流状况下的车辆驶出概率,提出了基于交通仿真的安全换道概率模型。首先,采用VISSIM标定仿真模型并进行正交试验,获取小净距路段在不同净距长度、交通量、驶出比例、大型车比例下的交通数据,在此基础上确定瞬时交通流密度及相应车流平均速度的计算方法,构建相应的分布模型,通过K均值聚类算法研究不同速度下的瞬时交通流密度大小和出现概率;同时引入可靠度方法并利用微分法来构建车辆安全换道概率模型,综合考虑车速、车流密度、目标车道临界可插入间隙等因素的不确定性,应用蒙特卡罗仿真法搭建求解概率模型的算法,并通过MATLAB对模型进行求解;针对分流车初始位置的不同,分别得到了不同交通量、大型车比例、净距长度下的换道驶出成功率,进而研究不同交通流状况组合下的净距长度。结果表明:交通量、大型车比例、净距长度对净距路段内侧车道车辆换道驶出成功率有显著性影响,研究结果可为规范的进一步完善提供参考。  相似文献   

18.
混合交通信号交叉口右转机动车通行能力及其灵敏度分析   总被引:1,自引:0,他引:1  
为了解决信号交叉口右转机动车受自行车干扰严重的问题,运用间隙理论和车流波动理论研究干扰环境下右转机动车的通过数量,以度量混合交通环境下右转机动车的通行能力。在分析大量调研数据的基础上,探讨了无信号控制的右转机动车和自行车在二相位信号控制交叉口运行的微观行为,提出了混合交通环境下信号交叉口右转机动车的通行能力模型,结合典型路口对该模型的有效性进行了验证,并开展了右转机动车通行能力相对于自行车流量的灵敏度分析。结果表明:当自行车到达量在500~1500 bic.h-1情况下,自行车到达量的变动对右转机动车通行能力的影响较大。  相似文献   

19.
分析曲线路段对道路通行能力的影响,将交通流比拟成流体流,运用流体力学理论,基于车辆的平均密度、平均速度及速度参数,求出车辆在曲线路段的粘性阻力,建立车辆在曲线路段的交通粘性力学模型。  相似文献   

20.
单晓峰  王炜  王昊  徐上 《交通与计算机》2006,24(6):41-43,64
自行车是城市居民出行的主要方式之一,研究自行车交通流的特性对于合理规划道路交通资源,提高白行车交通服务水平具有重要意义。针对白行车交通流与机动车交通流的不同特征,提出了以单位面积车道上车辆集散程度定义白行车交通流密度的新方法,并基于调查数据,研究了非拥挤状态下自行车交通流密度、车速和流率3个参数的相关性,发现非拥挤自行车流的速度总是分布在接近期望车速的范围内,且与流率、密度无关,而速度的离散程度随着密度的增大而减小。最后,分析了车道、宽度与交通流3个参数的相关性,并建立了相应的回归模型,模型可用于在给定自行车交通需求以及服务水平条件下自行车道的设计宽度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号