首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
盾构法施工中不可避免地会对周围地层产生扰动影响,故加强盾构施工变形控制显得尤为重要。文章以某城市地铁盾构隧道工程为研究背景,采用理论分析和数值模拟方法,研究了双孔平行隧道施工地表沉降分布规律及影响因素,提出了改进的双线隧道地表沉降预测方法,并与现场实测数据进行了对比分析。研究结果表明:隧道间距越大,形成"W"形沉降曲线特征越明显;隧道埋深越小,沉降曲线由"V"形向"W"形转变所需的隧道间距L越小;土质条件越好,地层扰动影响范围越小,"W"形沉降槽特征也越显著;采用C=L/2i来描述双线平行隧道地表沉降分布特征是可行的,随C值增大地表沉降曲线分布由"V"形—"锅底"形—"W"形发展,"W"形非对称性分布特征与隧道相对间距有关;由本文提出的双线盾构施工引起的地表沉降计算公式计算出的地表沉降预测值与实测沉降曲线吻合较好,可用于双线隧道施工地表沉降变形预测,对盾构隧道研究具有重要理论指导和实践意义。  相似文献   

2.
文章针对郑州地铁盾构法隧道近距离叠交穿越电力隧道的施工工况,应用ABAQUS软件对地铁隧道穿越电力隧道施工进行数值模拟,研究分析了郑州砂性地层盾构施工引起的地表以及电力隧道的沉降规律。计算结果表明,地表沉降最大值位于两隧道中心,约12 mm;电力隧道最大沉降值位于盾构隧道与电力隧道交点处,最大值约15 mm,在规范要求沉降范围内。基于研究成果,采取针对性施工措施后,地表沉降与电力隧道的沉降得到了有效控制,确保了电力隧道的安全。  相似文献   

3.
杭州地铁盾构隧道掘进对建筑物影响的实测分析   总被引:2,自引:0,他引:2  
文章基于杭州地铁1号线某区间盾构隧道下穿建筑物工程实例,对双线盾构隧道施工过程中引起的建筑物和地表沉降进行了现场监测,并结合盾构掘进系统的数据,对建筑物和地表的实测沉降数据进行了分析,研究了双线盾构隧道掘进施工引起不同位置、不同结构建筑物的沉降规律。结果表明:盾构施工过程中通过控制注浆量和排土量,能有效地控制建筑物的沉降;建筑物基础底面积越大,监测点的沉降曲线越复杂,越需要严格控制施工进程;建筑物离隧道轴线的水平距离越近,监测点的沉降规律和轴线上方地表的沉降规律也越接近。  相似文献   

4.
文章针对盾构隧道邻近深基坑推进的工况,进行室内缩尺模型试验,并建立了对应工况下的盾构隧道-土体-基坑围护结构三部分共同作用的三维有限元计算模型。通过对比同一工况下的室内模型试验和数值计算结果,验证了三维数值分析的可行性和可靠性;得到了邻近既有深基坑的盾构法隧道施工引起周边地表沉降的分布特点及其变化规律;分析了盾构隧道开挖引起的横断面不同深度处地层位移的特点;分析了隧道上方的地表沉降分布受邻近既有基坑的影响及沉降值随盾构隧道推进进度的变化规律,得到了盾构隧道对基坑围护结构的位移影响情况;并提出了盾构隧道施工过程中对周边地表沉降、地层变位及基坑围护结构位移与变形进行实时监测的建议。  相似文献   

5.
昆明地铁首次在含有泥炭质土软弱地层中采用盾构法施工,难度极大。文章依托昆明地铁首期工程实践,考虑含有泥炭质土软弱地层条件下先行隧道施工对后行隧道施工的影响,建立修正的Peck公式对地表沉降进行计算,在此基础上采用数值方法进一步分析该软弱地层条件下地铁盾构掘进引起地层沉降变形规律,并与地层沉降预测经验公式对比。研究表明:本文方法与数值模拟结果以及现场监测数据吻合较好,可以较好地分析含泥炭质土软弱地层中盾构掘进引起的地层变形规律;先施工隧道的外侧地表沉降变化率较大,后施工的隧道外侧地表沉降变化率较小,但横向沉降范围较大;最大沉降量位于两隧道轴线的中线和先施工隧道的轴线之间,主要由先施工的隧道引起。最后,结合盾构施工监测数据,提出了含泥炭质土软弱地层条件下地铁盾构施工地层变形控制技术措施。  相似文献   

6.
目前市正建设中,盾构法暗挖隧道得到了广泛的运用。然而,地下施工将引起地表沉降,使邻近建筑和管线受到不同程度的影响。作者以上海地铁为工程背景,把数值分析理论应用于这一研究领域,推导出一套利用试验段实测数据推算出在整条隧道的施工中可能产生的地面沉降的计算方法,由它推算的沉降纵向分布曲线能较真实地反映各种情况下盾构推进引起地面沉降的规律,经对实测曲线比较,由它预测的沉降曲线基本符合实际情况。数值理论预测沉降的方法依赖于施工过程中的实测数据,其反映的是施工阶段的沉降,这种方法适用于施工进行过程中的沉降预测,并有助于分析各种施工参数推进引起的地面沉降规律。  相似文献   

7.
在软土地区进行地铁隧道盾构法施工时,地表沉降很难得到有效的控制。文章通过三维有限元法模拟地铁隧道盾构法施工过程,分析了软弱土层分布对地表沉降的影响,并通过实测结果分析研究了盾构法施工中土层物理力学特性对地表沉降的影响。研究表明,软弱土层分布在地表至隧道底部以下0.23D范围内时(D为隧道外径),可对地表沉降产生不同程度的影响;其中,软弱土层分布在隧道埋深范围及拱顶0.23D范围内时,对地表沉降的影响最为严重,影响率超过9.910 3%;相同情况下,隧道轴线上方的软弱土层比下方软弱土层对地表沉降的影响更加明显,隧道轴线上方软弱土层对地表沉降的影响是隧道轴线下方软弱土层的1.5~6.35倍;地表沉降最大值分别随盾构断面土层压缩模量加权平均值、粘聚力加权平均值增大而减小,地表沉降最大值与土层内摩擦角加权平均值无明显关系;沉降槽宽度系数i随土层内摩擦角加权平均值增大而减小,与土层压缩模量加权平均值、粘聚力加权平均值无明显关系。  相似文献   

8.
地铁盾构隧道施工对周边环境影响的监测   总被引:1,自引:0,他引:1  
地铁盾构隧道在通过不良地质条件地段施工过程中会对地层产生扰动,可能引起地表及周边建筑物变形或沉降,尤其是隧道穿过正在施工的基坑止水幕墙时,可能会拉裂幕墙危及基坑及附近建筑物安全,因此必须进行监测。文章介绍了广州地铁盾构隧道施工过程中的第三方监测的经验和体会,可供同类工程施工中借鉴。  相似文献   

9.
针对青岛地铁隧道穿越富水砂层施工过程中存在的涌砂、涌水等不稳定性问题所采取的深孔注浆加固措施,文章结合地铁3号线某区间富水砂层隧道工程实例,通过FLAC3D数值计算与现场实测手段进行了富水砂层地区地铁隧道施工中深孔注浆加固扰动机理研究。研究结果表明:(1)注浆深度和注浆压力对地层扰动变形影响显著,应综合考虑、合理选取,青岛富水砂层地区宜采用1.4~1.5 MPa的注浆压力;(2)地表持续隆起时,双线隧道上方的地表地层呈现M状隆起,隧道中线部位注浆压力对地层扰动影响明显,隆起最大位于拱顶部位;(3)地表在注浆初期迅速隆起,掌子面开挖至监测断面前-3D范围内时地表开始快速沉降,-2D范围内沉降放缓,开挖通过监测断面后至1D范围内地表较快沉降,然后逐渐趋于稳定;(4)注浆施工对建筑物的影响程度要小于单纯的地表抬升,上方建筑物随地层的M状变形出现正曲率变形,损害建筑物结构时,建筑物墙体一般会形成倒八字裂缝;(5)隧道内拱顶沉降和净空收敛均在下穿监测断面时变形较快,当开挖至距监测断面2D范围后,变形趋势逐渐减小,至3D范围后逐渐趋于稳定。  相似文献   

10.
文章以沈阳地铁中街站大跨度隧道工程为研究对象,应用FLAC3D计算软件,对复杂条件下浅埋暗挖大跨度隧道引起的地表沉降变形特征进行了数值模拟。根据洞桩法施工开挖方案,紧密结合工程实际,将动态施工开挖过程划分五个工况进行模拟,分析各施工工况对地表变形的影响和分布规律,并按工程信息化施工要求事前将预测数据提供施工单位,以指导施工控制地表沉降。模拟结果表明,采用洞桩法开挖施工过程中,对地层土体扰动较大,明显影响隧道中心附近地表变形的步序是小导洞开挖和初期支护扣拱施工阶段,约占最终沉降量的70%;而其他步序影响较小。最终,地表沉降在隧道横向分布呈"W"形态。模拟结果与现场监测数据具有较好的拟合性,表明利用数值分析方法预测大跨度隧道施工期地表沉降是可靠的。  相似文献   

11.
文章以南昌地铁2号线雅苑路站施工为例,基于小应变硬化土体(HSS)本构模型,建立从端头井始发的双线盾构隧道掘进模型,分析了基坑开挖与双线盾构掘进共同作用下的土体沉降规律。结果表明:(1)加固盾构始发区土体可有效减弱区域范围内地表沉降,该区域内地表沉降量远小于区间隧道沉降量;(2)在同一埋深条件下,先建隧道地表沉降最大值高于后建隧道地表沉降最大值,地表横向沉降槽呈现非对称W型;(3)基坑开挖与盾构掘进共同作用下引起的地表沉降值,可以由二者单独作用产生的沉降值叠加计算得到。  相似文献   

12.
盾构掘进参数对地表沉降的影响分析   总被引:3,自引:0,他引:3  
盾构法作为地铁隧道施工的一种主要施工方法已在我国得到广泛的应用,由施工引起的地层移动和地表沉降是盾构隧道设计和施工中备受关注的问题.文章以深圳地铁5号线洪浪-兴东盾构区间下穿广深高速公路立交桥隧道施工为工程依托,通过数值模拟和现场监测,对影响地表沉降的掘进参数进行了模拟分析.计算结果表明,地表下沉与盾构掘进参数密切相关,适当加大注浆压力能有效控制地表沉降;同时,土舱压力与土体原始侧向压力接近时地表沉降量最少.实测地表沉降与掘进参数的关系表明,当注浆量一定时,地面沉降随土舱压力的增加而减小;地表沉降随着注浆量及注浆压力的增大而减小.  相似文献   

13.
为研究盾构下穿对管线的影响范围,文章以杭州地铁5号线某区间盾构下穿燃气管工程为依托,基于Mohr-Coulomb屈服准则建立三维数值模型模拟盾构下穿管线的分步开挖施工工况,计算结果表明G2破除引起隧道主体结构拱顶沉降、盾构下穿引起管线G1、G3、G4的沉降均在安全限值内。通过研究管线沉降规律发现:(1)若盾构隧道在开挖前土体被扰动,则隧顶沉降比未扰动时大、对隧底隆起无影响,对隧顶沉降主要影响区为扰动土体前后1.5D范围,距离越近影响越大;(2)隧道下穿管线掘进过程中,在距二者平面交点0.5D范围内管线沉降变化明显,超过1.5D后管线基本稳定并达到最大值,施工期间应重点关注。  相似文献   

14.
城市轨道交通盾构法施工所引起的地表变形是施工中必须重视的问题。文章以广州地铁某在建盾构隧道工程为研究对象,分析了盾构施工时引起地表横向、纵向沉降规律。基于Peck公式提出了一种利用插值法、最小二乘法的预测模型,并将该模型应用到信息系统进行地表沉降预测。结果表明,提出的预测模型能够在监测数据非极值的情况下,对地表沉降进行较好地预测。该研究成果可为工程实践及理论研究提供参考。  相似文献   

15.
软土地区盾构隧道施工会对邻近建筑物的变形、内力产生一定程度的影响,造成该影响的因素包括盾构施工工艺、地基特性及建筑物自身特点等。文章以盾构施工轴线上方的浅基础建筑物为研究对象,基于土体损失计算理论,建立了建筑物与基础、地基协同作用的力学模型。结合实际工程,采用1stopt软件求解弹性地基上建筑物弯曲的微分方程,分析了隧道轴线上方建筑物沉降、倾斜以及内力随盾构开挖面位置变化而变化的分布规律。选取建筑物内出现最大正弯矩和最大剪力时的开挖工况,研究土体损失率、建筑物刚度、地基基床系数等引起建筑物内力变化的关键因素及影响规律。研究成果可为今后盾构掘进区建筑物的保护、设计和施工提供理论计算基础。  相似文献   

16.
文章提出盾构法隧道统一土体移动模型二维解的修正公式,并利用该公式计算近距离条件下双线平行盾构施工产生的总的地面沉降。该方法适用于双线隧道近距离工况,采用近距离界定系数C=L/(h+R)≤0.66作为本文公式适用条件,当C0.66时本文公式不再适用;当C≤0.66时,沉降曲线呈"V"形;当0.66C≤0.79时,沉降曲线呈"V-W"形;当C0.79时,沉降曲线呈"W"形。算例分析结果表明:当C≤0.66时,本文方法计算得到的地面沉降值与实测值非常吻合;近距离双线平行盾构施工引起的地面沉降曲线符合正态分布规律,但最大沉降值有时会偏离中轴线。  相似文献   

17.
深大基坑施工诱发的运营隧道变形以及周围土体沉降等施工问题,在我国城市轨道交通施工安全控制和风险评估中受到日益关注。文章基于上海市交响乐团在建基坑工程,结合运营隧道以及基坑围护结构监测数据,分析了基坑不同开挖阶段周边地表沉降、地下连续墙变形、运营隧道收敛变形以及竖向位移的规律和特点。实测结果表明:周边地表总体呈下沉趋势,大致呈抛物线型分布;坑外土体侧斜和围护墙体侧移具有基本相同的变化规律,且均向基坑内侧移,开挖深度对土体侧移的影响并不是简单的线性关系;隧道的水平附加收敛表现为向外拉伸,随基坑开挖的进行,收敛变形增幅明显;隧道净沉降曲线与基坑周围土层、围护结构变形曲线的变化趋势具有较好的一致性;地下连续墙两侧SMW工法加固可有效控制隧道、坑外地表以及地下连续墙的变形。研究成果可为正确制定软土城区基坑施工对邻近地铁隧道的保护措施提供一定的理论依据。  相似文献   

18.
风井横通道穿越既有盾构隧道管片施工是"先隧后井"法施工的难点,选择合适的开挖层数、台阶间距及管片的破除方式对开挖面的稳定、邻近盾构隧道管片的安全及地表沉降控制是极为重要的。文章以西安地铁9号线某区间为工程背景,构建"先隧后井"法施工的3D有限元模型,并根据地表沉降实测值,进行盾构隧道掘进过程的追踪模拟和地层参数反演分析。结果表明:采用分层分台阶留核心土方法来开挖横通道较为合理,其中开挖层数建议为4层,台阶间距建议为3 m,在横通道掘进穿过既有盾构隧道管片时,应先破除与横通道交界处两侧管片,再破除中间部位管片,且在破除管片前应放松影响区内管片之间的连接螺栓,减少对管片的纵向和环向破坏。  相似文献   

19.
文章基于四车道大断面超小净距的浅埋隧道开挖理论,以钦州市北部湾大道至中马钦州产业园道路工程B隧道为工程依托,对隧道在施工过程中进行地表沉降观测,研究了双侧壁导坑法施工中各施工步骤对地表沉降变形的影响规律及超小净距的邻近隧道开挖对已开挖隧道地表沉降的影响情况,并结合各测点的实测数据与太沙基地下洞室围岩压力理论,分析得到大跨度浅埋隧道开挖岩体的扰动范围。  相似文献   

20.
以北京地铁9号线某区间隧道近接既有铁路桥梁施工为背景,文章基于Hardening-soiJ本构模型采用三维数值计算与现场实测结果相对比的方式,研究卵石地层地铁隧道近接既有铁路桥施工的位移特征。研究得出的结论为:(1)卵石地层岩体较为松散,胶结性较差,围岩稳定性较低,可引入Hardening-soil模型模拟其应力-应变关系;(2)区间隧道开挖引发的竖向位移主要集中在隧道拱顶部位,并随着向地层深部的发展逐渐衰减;(3)地铁区间隧道施工引发的地表沉降可认为是两条单洞隧道地表沉降曲线的叠加,现场实测与数值计算得出的规律一致;(4)既有铁路桥结构最大位移值小于《铁路线路修理规则》的容许位移,现有开挖方式和支护参数满足既有结构安全运营条件;(5)地铁区间隧道开挖引发的地层、既有桥梁结构水平位移整体较小;(6)区间隧道开挖引起的土体扰动主要集中在隧道洞周5.4 m范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号