首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
重载列车纵向冲动分布试验研究   总被引:1,自引:0,他引:1  
通过1万t和2万t重载列车的运行试验,得到重载列车在不同的货车和机车编组方式、线路工况、机车牵引特性、操纵方式、制动以及车钩间隙等各种试验工况下的试验数据,并根据试验数据分析列车中不同位置货车的车钩力以及车体纵向加速度值的分布规律。分析结果表明:重载列车制动时的车钩力最大值均出现在制动开始缓解至缓解完毕的过程中;采用1+1编组方式的1万t重载列车在长大下坡道制动时的车钩力均大于平直道时;而采用1+1编组方式的2万t重载列车在长大下坡道制动时的车钩力均小于平直道时。货车在列车中所处的编组位置不同,其车体纵向冲动也不同;车钩间隙减少2/3,则车钩力可降低近1倍。主从控机车通讯及时可靠也是使不同位置的货车车钩受力分布均匀和减小列车中车体纵向冲动的重要措施。  相似文献   

2.
我国的大秦铁路重载组合列车采用Locotrol同步控制系统,可使列车头部主控机车与中部从控机车间保持同步操纵。但是在列车缓解过程中,由于全列只有2个机车作为风源对列车管充风,列车前后部制动同步性差,纵向冲动明显,特别是位于列车中部断面的机车将不可避免地受到大纵向力作用的冲击,严重影响重载列车的运行安全。为探究大秦线中部从控机车循环制动中的纵向力演变规律,进行列车在等效坡度、制动初速、缓解初速、制动-缓解初速差和电制力等各种制动调速过程中不同工况下的一系列试验,对大秦线2万t重载组合列车的中部机车纵向力进行了全面系统的分析。针对重载列车运行安全性问题,提出了2种改善途径,一是提高钩缓装置的受压稳定性,二是通过优化操纵降低列车纵向冲动。此外,根据重载组合列车纵向动力学仿真模型的计算结果,对大秦线2万t重载组合列车在关键区段的实际运行操纵方式进行了仿真模拟。仿真结果表明:在长大坡道循环制动缓解过程中,降低电制力可在一定程度上降低重载组合列车中部机车的压钩力。通过利用坡度变化和改变电制力的优化操纵可以降低重载组合列车纵向冲动。进一步验证了试验分析的结论,为列车操纵优化提供了理论依据。  相似文献   

3.
采用列车空气制动和纵向动力学联合仿真系统研究制动缸充气时间对万吨列车和快捷货车的车钩力、制动距离与纵向加速度的影响。计算结果表明,长大列车制动缸充气时间对车钩力影响较大,快捷货车制动缸充气时间主要影响制动距离和列车纵向加速度,因此在长大列车制动系统充气时间设计时必须考虑车钩力因素,在设计运送易碎货物列车制动系统时需要考虑纵向加速度的限制。  相似文献   

4.
应用重载列车空气制动与纵向动力学联合仿真系统,分析了常用制动时,一段局减孔、二段局减孔和局减阀弹簧对列车制动特性和纵向冲动的影响.常用制动时,一段局减孔面积增加90%,尾车列车管排气时间减少约7%,尾车制动缸达到平衡所用时间减少约10%,最大压钩力减小3.30%~4.84%.二段局减孔面积对列车制动特性和纵向冲动影响很小.局减阀弹簧工作弹力从35.8N增加到90.8N时,尾车列车管排气时间减少10.04%~18.24%,尾车制动缸达到平衡的时间减少19.25%~34.43%,压钩力减小3.30%~11.63%.局减阀弹簧工作弹力对重载列车车钩力影响最大,局减阀弹簧工作弹力越大,车钩力越小;一段局减孔径对车钩力影响次之,孔径越大,车钩力越小.二段局减孔径对车钩力影响很小.该研究为重载列车用新分配阀的设计和发展提供了方向.  相似文献   

5.
3万t重载列车是目前国内重载运输行业的重点研究对象,ECP方式是降低重载列车车钩力的重要手段。文章针对3万t重载列车,采用仿真方法研究了ECP电控信号传播方式的传播特性、列车制动能力和纵向冲动水平。研究表明,在3种ECP电控信号传播方式下,列车电控装置动作时间差为2.66~3.97 s,列车中制动缸活塞伸出时间差为2.80~3.80 s, 3种方式下列车制动能力差异不大,制动过程中产生车钩力最小的ECP传播方式为主控机车发送ECP信号的同时从控机车向前后发送ECP信号,紧急制动时最大车钩力为-1 565 kN。通过探究ECP信号传播方式对3万t重载列车制动工况纵向冲动的影响,可为3万t列车电空制动方案设计提供参考。  相似文献   

6.
随着京沪客运专线的建立,客货运输分线,提升货运能力已成为一个亟待解决的问题。使用大功率机车牵引万吨单编列车可以提高运能,但京沪线现有站台长度不能满足长大列车的停车要求,组合重载是提高运能的可能方式,多列车连挂运输使得列车的纵向冲动增加。本文以京沪线万吨组合列车(由两列5 000t的单编列车组成)为研究模型,计算分析了多种减压量制动和制动后缓解以及紧急制动车钩力分布规律。在此基础上分析了主从机车不同步时间对车钩力影响规律,并寻找到常用制动时,制动缓解时,从控机车提前于主控机车4s动作时车钩力较小;紧急制动时,从控机车提前于主控机车1s动作车钩力较合适。主从机车不同步动作对制动距离影响较小。  相似文献   

7.
针对目前在复杂线路上动力分布式重载组合列车机车制动的不足,提出了一种新的机车智能制动控制方法,该智能制动控制方法能按照制动时机车所处轨道状况及机车车钩力大小对机车电制动进行相应的模糊控制。在介绍重载组合列车动力分布式系统基本原理及特点的基础上,依据列车纵向动力学理论,在MATLAB/SIMULINK中建立了2万吨组合列车仿真模型。仿真结果从理论上证明了,与现有机车制动方式相比,该机车智能制动控制方法能减小组合列车最大车钩力,提高组合列车运行安全性。  相似文献   

8.
针对摩擦式车钩受压偏转行为,分析了重载机车二系横向止挡纵向间距对车钩偏转角的关系,通过建立由2台8轴重载机车、1台虚拟货车与4组缓冲器具有迟滞特性的摩擦式钩缓系统组成的列车动力学模型,研究了制动条件下机车二系横向止挡纵向间距对车钩稳定性能与列车运行安全性能的影响规律。计算结果表明:二系横向止挡纵向间距对车钩受压稳定性能及列车运行安全性有重要影响。在500 kN压钩力作用下,当二系横向止挡纵向间距为10 m时,车钩最大偏转角和车体横向错位分别为10°和60 mm,列车安全性指标超出安全限值;当二系横向止挡纵向间距增加至14 m时,车钩最大偏转角和车体横向错位分别减少了70%和67%,列车安全性指标远低于安全限值。在机车设计中,应该适当地增加二系横向止挡纵向间距提高制动条件下列车安全运行性能。  相似文献   

9.
两万吨重载组合列车牵引和制动时的车钩力分析   总被引:1,自引:1,他引:0  
利用循环变量法建立了由2台"和谐号"机车牵引的两万吨重载组合列车的3维空间耦合模型,比较了两万吨重载组合列车当机车处于2+0、1+1+0、1+0+1这3种不同编组位置时,在主辅机车同步牵引、辅机滞后牵引、主辅机车同步制动、加装可控列尾装置制动等工况下列车的车钩力。仿真计算结果表明:在以上牵引和制动工况下,机车在1+1+0编组位置时列车整体车钩力最小;在2+0编组位置时列车的车钩力和列车冲动均最大,而1+0+1编组位置下列车性能处于1+1+0和2+0编组位置之间。在安装可控列尾装置后,在制动时列车的车钩力和纵向冲动均较未安装时减小。所以在对两万吨重载组合列车进行编组时,宜采用1+1+0这种编组方式并安装可控列尾装置。  相似文献   

10.
我国货运列车一直使用500kPa和600kPa两种列车管定压,两种列车管定压带来列车管理和运用中的一系列问题,要求统一列车管定压呼声很高。但列车管定压对列车制动性能影响一直没有明确结论,因此统一列车管定压工作迟迟不能推进。使用基于气体流动理论的列车空气制动仿真系统,仿真分析了两种主管定压下重载列车的常用制动,紧急制动和常用制动后缓解的制动系统性能,系统的分析了列车管定压对列车制动和缓解性能的影响。计算结果表明,当常用制动减压量在140kPa以下时,主管定压600kPa时制动能力略强,约增强1.5%左右,其主要原因制动缸充风略快。当全制动时,主管定压600kPa比500kPa制动缸平衡压强高约74kPa,制动能力增强5.4%;主管定压600kPa时全制动减压量范围扩大,制动缸压强变化范围增大,列车调控能力更强。紧急制动时,定压600kPa制动能力比500kPa能力更强,制动距离缩短11.4%,主要原因是副风缸初压高,紧急制动后制动缸最终压力也高。常用制动缓解时,在制动系统漏泄较小时主管定压对列车再充风能力影响不大,但当制动系统漏泄较大时,列车管定压越高,再充风时间越长,在中度漏泄时,再充风时间约延长13.9%。  相似文献   

11.
建立超长重载列车纵向动力学仿真模型,并利用大秦线3万t重载组合列车长大下坡道制动试验数据对其进行验证;分析超长重载列车平直道制动工况时列车编组长度、机车无线同步控制延迟时间,以及长大下坡道常用全制动时坡度差、车钩间隙和ECP制动控制技术对纵向力的影响规律.结果表明:正常情况下,4万~12万t超长重载组合列车编组长度对平...  相似文献   

12.
机车二系悬挂参数对重载车钩受压稳定性影响显著,为了探究102型车钩与重载机车二系悬挂参数的合理匹配,文章利用SIMPACK软件建立了详细的102车钩与HXD1型八轴重载机车组成的双机重联动力学模型,分析了不同计算工况下车钩力学特性与重载机车的安全性能;对比了不同车钩自由角及纵向力作用下,二系悬挂参数对机车安全性的影响。结果表明:当纵向压力较小时车钩转角稳定在自由角,机车轮轴横向力随车钩自由角及机车二系悬挂横向刚度增大而增大,与车钩纵向力无关。当纵向车钩压力增大到车钩需克服复原块预压缩载荷发生偏转时,车钩转角进一步增大,此时适当增加机车二系横向刚度有利于车钩稳定且影响较小。为保障制动工况下列车的运行安全,建议控制车钩自由角在6°以内,转向架单侧二系横向刚度范围在0.45~0.60 kN/mm;二系横向止挡间隙选择35 mm自由间隙及5 mm弹性间隙。  相似文献   

13.
重载组合列车由于编组牵引机车设置位置的差异性,会造成组合列车制动指令接受/发送、列车制动/缓解以及列车充气时间等的差异性,通过对神华集团朔黄铁路开行的2万t重载组合列车不同编组模式对组合列车的影响分析,同时结合2万t重载组合列车静态时的试验数据,提出了"2+1+1编组"模式制动性能优于"1+1编组"模式的建议方案。  相似文献   

14.
重载列车运行过程中过大的车钩纵向力一直是制约重载列车发展的瓶颈,空气制动不同步是产生列车纵向冲动的根源,导致车体挤压车钩形成车钩力。传统的经过制动特性试验采集车钩力的方法耗时耗力,为了经济地获取重载列车在不同线路上运行时车钩力的大小,将Newmark-β法应用于重载列车车钩纵向力的仿真分析中。由于列车纵向动力学方程是非常复杂的非线性方程,传统方法为了保证计算精度而采用大量迭代运算,耗时长效率低。基于增量思想改进Newmark-β法,通过引入预测解直接对非线性方程进行处理,然后对预测解进行校正,最终得到收敛的近似解。算例结果表明,改进算法在保证了计算精度的同时计算效率更高,更适用于长大编组重载列车车钩纵向力的仿真计算和分析。  相似文献   

15.
为研究重载组合列车中的中间机车承压能力,在分析13A/QKX100钩缓系统工作原理的基础上,建立了具有非线性迟滞特性的弹性胶泥缓冲器及具有钩尾摩擦弧面的车钩仿真模型。采用由1台HXD1八轴机车及2节C80货车组成的列车模型,分析了不同特性钩缓系统的承压动态表现,并研究了配备不同特性钩缓系统时中间机车的承压能力。研究结果表明:对于没有摩擦稳钩作用的车钩,中间机车轮轴横向力最大值随纵向压钩力及车钩自由角的增大而增大,但当车钩自由角较小时轮轴横向力相对纵向力的增大不明显;当车钩自由角小于6°时或钩缓系统具有摩擦稳钩作用时中间机车的承压能力大于2 500 kN。  相似文献   

16.
基于列车纵向动力学理论和车辆—轨道耦合动力学理论,建立考虑钩缓系统中车钩纵向、横向和垂向作用力的重载列车—轨道耦合动力学模型。以机车牵引万吨列车为考核工况,分析牵引和制动时机车的受力特点,研究牵引力、制动力及车钩力对机车运行性能的影响过程和影响程度,并对理论模型进行试验验证。结果表明:在牵引、电制动及紧急制动工况下,直线线路上机车的轮重分别较惰行工况降低了约13,7和4kN,单纯的牵引或制动力可降低轮轨横向蠕滑力,间接造成轮轨横向力的小幅增大,但轮轴横向力基本不变;车钩力可通过车钩摆角产生横向分量,并传递到轮轨界面,改变轮轴横向力的整体变化趋势;若车钩偏转3°,在电制动工况下,前部机车承受的压钩力较大,引起的轮轴横向力增幅达18kN,在紧急制动工况下,机车上的压钩力幅值小,引起的轮轴横向力在8kN以内。  相似文献   

17.
5000t级重载列车供风能力的研究   总被引:1,自引:0,他引:1  
汤祥根  张开文 《铁道学报》1994,(A06):119-124
本文讨论了5000t级重载列车供风能力的问题,分析了机车压气机压气量,机车总风缸容积及列车制动系统的漏泄以列车充气时间的影响,指出对机车中继阀作一些必要的改进,对缩短列车充气时间是有利的。  相似文献   

18.
承受纵向压力时HXD2型重载机车动力学问题研究   总被引:1,自引:0,他引:1  
针对HXD2型重载机车牵引试验中安全性指标超限的问题,对DFC-E100型钩缓装置及其原型车钩受纵向制动压力下的作用原理进行了分析,根据DFC-E100型钩缓装置的试验数据建立了车钩动力学模型,并将其应用到两台HXD2机车牵引重载列车的分析模型中,对承受纵向压力时重载机车的动力学问题进行研究.结果表明大摆角车钩必须具有对中复位功能;纵向压钩力和对中复位功能对机车轮缘磨耗有显著影响.  相似文献   

19.
列车空气制动与纵向动力学集成仿真   总被引:2,自引:0,他引:2  
魏伟  赵旭宝  姜岩  张军 《铁道学报》2012,34(4):39-46
长大列车纵向冲动一直是重载列车发展的瓶颈,空气制动不同步是列车纵向冲动的根源,制动特性试验方法已不能够满足仿真各种列车编组的纵向冲动分析的需求,特别是多机车不同步动作、列车中有可控列尾装置等使得试验基础上的制动特性更具有局限性,因此获得适用性更广的制动特性成为纵向动力学研究的首要问题。本研究开发了列车空气制动与纵向动力学联合同步仿真系统,该系统基于消息机制,能够在运行过程中改变列车驾驶指令。介绍列车制动系统和纵向动力学同步仿真基本原理,气体流动理论,列车管压强、缸内压强计算方法,机车牵引、动力制动,缓冲器特性、摩擦系数、纵向冲动等计算方法。仿真计算典型长大列车制动特性和纵向冲动特性并与试验结果进行比较,与试验结果吻合较好。该仿真系统适合于模拟各种编组列车在各种线路运行过程中制动力与车钩力等重要参数,为制动系统和列车纵向冲动等研究提供方法和手段。  相似文献   

20.
大秦线重载列车运行仿真计算研究   总被引:10,自引:1,他引:9  
针对大秦线的实际情况,通过建立重载列车运行仿真计算模型,研究大秦线不同编组重载列车的牵引、制动等技术参数,为大秦线组织重载列车试验、制订合理的操纵方法和保证列车安全、可靠、正点、高效、节能运行提供技术依据.仿真计算表明采用LOCOTROL技术,运用合理的操纵方法,按照SS4型机车(1 2 1)和(4X5000t)编组方式以及HXD1机车(1 1 0)编组方式牵引2万t组合列车,均能够满足大秦线运行时分以及长大下坡道对循环制动再充风时间的安全性要求.采用HXD1型机车(1 1 0)编组方式牵引2万t列车的最大纵向力比SS4型机车(1 2 1)编组方式的稍大,紧急制动最大纵向力一般在2000 kN以下,常用全制动最大纵向力为1000 kN左右,均有一定的安全裕量.仿真计算结果与实际试验结果相吻合,为大秦线成功开行2万t级重载组合列车提供了技术支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号