首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the freak wave impinging on a tension-leg platform through wave flume experiments. The freak waves are generated using the focused wave theory. By adjusting the wave focusing location, different incident wave scenarios at the structure location are produced. Simultaneous measurements of wave shape evolutions upon impingement, wave impact pressures on the platform deck, platform motions and tether forces are carried out for synchronized analyses of the wave kinematics/dynamics and structural responses. The variation of these parameters with the incident wave profile is studied. It is found that although applying less intensive local impact pressures as compared to the highly-breaking freak wave, the slightly-breaking or non-breaking freak wave imposes the same level of adverse effect on the platform's global stability in terms of motions and tether forces. In addition, the high-crest freak wave causes violent motions of the floating platform, which are likely to induce snap loads of large amplitude and high occurrence frequency in tethers. The published results would provide useful benchmarks for validating numerical and analytical models.  相似文献   

2.
覃廖开 《船舶工程》2019,41(7):133-138
与船型FPSO相比,圆筒型FPSO没有明显的总纵弯曲,上部模块与船体结构之间通常采用刚性支墩来连接,水平运动所产生的弯矩和装/卸载引起的船体垂向变形对模块支撑结构的影响较为显著。因此,以“希望6号”圆筒型FPSO上部模块支撑结构为研究对象,基于DNVGL船级社规范,介绍一种简化疲劳分析方法。以FPSO运动加速度和船体变形载荷作为载荷输入条件,利用SESAM/GeniE软件进行有限元分析,得到结构在所有组合工况下应力的扫描计算结果。根据作业海域各个方向波浪发生的概率,运用简化疲劳分析方法计算得到所关注节点的疲劳损伤和各个工况对结构节点疲劳损伤度的贡献。结果表明,所关注节点的疲劳强度均满足设计疲劳强度要求;同一节点的疲劳损伤对不同浪向的敏感度不一样。该简化疲劳分析方法同样适用于承受周期性载荷的FPSO上部模块主结构和其他型式海洋结构物的疲劳分析。  相似文献   

3.
为比较直立堤胸墙圆弧半径对其所受波浪力的影响,设计半径分别为45、67、98 cm共3种弧形胸墙以及直立式胸墙进行相关物理模型试验。通过将胸墙迎浪面不同测点波浪压力进行积分获得波浪总力,讨论相对波高、相对波长和圆弧半径对胸墙波浪力的影响。研究结果表明,胸墙波浪力随着相对波高的增大而增大,随着相对波长的增大呈现先增大-后减小-再增大的变化趋势。相同波浪要素条件下,弧形胸墙波浪力较直立式大;在3种弧形胸墙中,波浪力随圆弧半径的增大而减小,半径为45 cm的弧形墙受力最大。  相似文献   

4.
斜坡基床上防浪结构设计探讨   总被引:1,自引:1,他引:0  
直立式防波堤承受波峰推力一般是波谷吸力的1.3~1.6倍,斜坡式防波堤和护岸顶部的防浪墙,波峰作用力是结构的控制荷载,波谷时基本不受波吸力作用,结构承受的控制水平力具有方向性。提出防浪块体设置在斜坡基床上的方案,利用斜坡方向的自重力分力克服部分波峰水平力,实现防浪结构在波峰、波谷作用下的稳定性基本处于同一水平。通过结构受力特点和施工可行性分析,初步认为在防浪结构的稳定性由基床顶面抗滑控制的情况下,该方案结构受力合理,具有可实施性和应用价值。  相似文献   

5.
《Marine Structures》2005,18(1):1-24
As an early part of a large design and fabrication-oriented project FasdHTS funded by the GROWTH programme of the European Commission, an exotic concept ship was designed in very high tensile steel (EHS690) with the purpose of finding out consequences for design and production. The project has already produced a considerable bank of knowledge for design and shipyard production in this material.This paper presents analysis and discussions on static and dynamic behaviour of a high tensile steel deck designed with trapezoidal stiffeners. First, a finite element model of the deck structure is created. The influence of support condition for the longitudinal girders, and the contact area between the vehicle tyre and panel were analysed. The results from modal analysis of the structure under different load conditions are presented. The different load conditions comprise the unloaded and loaded deck, and the load type, i.e. cargo loads or vehicle loads (car loads or truck loads). From the frequency response analysis under harmonic excitation, it shows how the locations and numbers of cars parked on the deck influence the dynamic response of the structure. Furthermore, by studying the car–deck interaction, it is found that the effects of normal cargo loads are quite different from the vehicle loads due to the spring/damping effects of the vehicles. It is suggested that the carloads have a similar mechanism to that of tuned mass dampers. Finally, two transient analyses of the structure due to excitations transferred from deck supports and lorry braking-induced loading are performed. It is suggested that the deck structure and vehicle design could have more interactions with each other.  相似文献   

6.
以某薄膜型液化天然气(Liquefied Natural Gas,LNG)船的结构设计为例,开展全船屈服强度校核和基于精细网格的有限元疲劳强度分析。针对5种典型装载状态,基于美国船级社(American Bureau of Shipping,ABS)全船强度直接计算指南,采用ABS-DLA/SFA系列软件,用三维波浪载荷预报程序对波浪随机载荷进行长期预报。基于预报结果,针对每种装载状态计算15个设计波参数组,求解全船结构在各载荷组合工况下的应力分布,继而完成屈服强度校核。以甲板机械室与穹顶甲板相交处的关键节点区域的节点设计为例开展细网格局部强度分析,并通过各种改进设计解决应力集中问题。针对2种常用典型操作装载状态及营运于北大西洋海区疲劳寿命满足40a的要求,基于ABS全船疲劳强度直接计算指南计算2个典型细化位置热点应力传递函数,通过谱分析得到疲劳累积损伤和疲劳寿命,完成疲劳强度校核。采用的全船强度和疲劳分析方法和思路适用于其他超大型船舶的结构分析。  相似文献   

7.
陈华杰 《船舶》2016,27(4):40-46
针对5 000 t自航甲板驳船,研究甲板宽大型驳船的波浪载荷及结构强度问题。根据船舶作业海域的海况条件,通过对波浪诱导载荷响应函数的计算,得出并预报船体所承受的波浪载荷。确定结构强度计算工况,分析甲板驳船结构强度问题。  相似文献   

8.
This paper reviews the importance of uncertainties in hull girder loads influenced by flexible fluid structure interactions. The focus is on developments in the field of hydroelastic modelling, simulation and model tests of practical relevance to the prediction hull girder wave load predictions and their validation. It is concluded that whereas hydroelastic methods for use in design development and assessment become increasingly useful, challenges in realizing and modelling uncertainties can be attributed to: (1) the limitations of numerical methods to suitably model nonlinearities; (2) the ambiguity of model tests; and (3) the systematic use of data emerging from computational, model- or full-scale methods. An approach is recommended to assess the uncertainty in the hydroelastic responses to wave loading and an example is provided to demonstrate the application of the procedure.  相似文献   

9.
本文采用基于设计波法的直接计算法对270 000m3的浮式液化天然气船FLNG进行整船结构强度评估.根据FLNG具体的结构形式和数值分析的最终目的将该装置的实际结构简化,选用适当类型的单元对该装置的结构进行离散而得到FLNG的整船有限元模型.基于三维势流理论并利用中国南海波浪散布图对FLNG进行水动力分析,得到了FLNG在典型装载工况下的波浪压力分布及设计波参数.通过把FLNG承受的波浪压力、惯性力、静水压力与重力等载荷分布到有限元模型上,得到FLNG在典型装载工况下全船的应力水平、应力分布和变形情况.该数值分析结果可在FLNG的初级设计阶段为船体结构强度分析提供有效分析依据,并为FLNG上部模块的设计开发提供船体变形参考.  相似文献   

10.
For the design of maritime structures in waves, the extreme values of responses such as motions and wave impact loads are required. Waves and wave-induced responses are stochastic, so such responses should always be related to a probability. This information is not easy to obtain for strongly non-linear responses such as wave impact forces. Usually class rules or direct assessment via experiments or numerical simulations are applied to obtain extreme values for design. This brings up questions related to the convergence of extreme values: how long do we need to test in order to obtain converged statistics for the target duration? Or, vice versa: given testing data, what is the uncertainty of the associated statistics? Often the test or simulation duration is cut up in ‘seeds’ or ‘realisations’, with an exposure duration of one or three hours based on the typical duration of a steady environmental condition at sea, or the time that a ship sails a single course. The required number of seeds for converged results depends on the type of structure and response, the exposure duration, and the desired probability level. The present study provides guidelines for the convergence of most probable maximum (MPM) wave crest heights and MPM green water wave impact forces on a ferry. Long duration experiments were done to gain insight into the required number of seeds, and the effect of fitting. The present paper presents part 1 of this study; part 2 [1] presents similar results for wave-in-deck loads on a stationary deck box.  相似文献   

11.
现代舰船的直升机起降时会通过轮胎将载荷作用于飞行甲板的板架上,这种载荷通常被称为轮印载荷。除此之外,相对于传统加筋板结构形式,I型夹层结构具有轻质、高比强度等优点,是一种可以应用于船舶飞行甲板的新型结构形式。本文针对轮印载荷局部重载和位置不确定的特点,设计了合理的试验贴片方案及加载程序,并将试验数据与理论值对比,分析误差原因,研究I型夹层板架结构的板格在四种典型位置轮印载荷作用下的静强度力学性能。试验结果表明,夹层板架结构在载荷附近测点的应力水平较大,同时其上面板沿船宽方向的弯曲应力大于沿船长方向的弯曲应力,而下面板2个方向的弯曲应力特性与上面板相反。这些结论对于I型夹层板架结构在轮印载荷下的力学性能研究具有重要意义。  相似文献   

12.
The dynamic buckling of the main deck grillage would result in the total collapse of the ship hull subjected to a far-filed underwater explosion. This dynamic buckling is mainly due to the dynamic moment of the ship hull when the ship hull experiences a sudden movement under impact load from the explosion. In order to investigate the ultimate strength of a typical deck grillage under quasi-static and dynamic in-plane compressive load, a structure model, in which the real constrained condition of the deck grillage was taken into consideration, was designed and manufactured. The quasi-static ultimate strength and damage mode of the deck grillage under in-plane compressive load was experimentally investigated. The Finite Element Method (FEM) was employed to predict the ultimate strength of the deck grillage subjected to quasi-static in-plane compressive load, and was validated by comparing the results from experimental tests and numerical simulations. In addition, the numerical simulations of dynamic buckling of the same model under in-plane impact load was performed, in which the influences of the load amplitude and the frequency of dynamic impact load, as well as the initial stress and deflection induced by wave load on the ultimate strength and failure mode were investigated. The results show that the dynamic buckling mode is quite different from the failure mode of the structure subjected to quasi-static in-plane compressive load. The displacements of deck edge in the vertical direction and the axial displacements are getting larger with the decrease of impact frequency. Besides, it is found that the dynamic buckling strength roughly linearly decreased with the increase of initial proportion of the static ultimate strength P0. The conclusions drawn from the researches of this paper would help better designing of the ship structure under impact loads.  相似文献   

13.
In the assessment of wave-in-deck loads for new and existing maritime structures typically model tests are carried out. To determine the most critical conditions and measure sufficient impact loads, a range of sea states and various seeds (realisations) for each sea state are tested. Based on these measurements, probability distributions can be derived and design loads determined. In air gap model testing usually only few, if any, impact loads occur per 3-hour seed. This can make it challenging to derive reliable probability distributions of the measured loads, especially when only a few seeds are generated. In addition wave impact forces, such as greenwater loading, slamming, or air gap impacts are typically strongly non-linear, resulting in a large variability of the measured loads. This results in the following questions: How many impacts are needed to derive a reliable distribution? How is the repeatability of individual events affecting the overall distribution? To answer these questions wave-in-deck model tests were carried out in 100 x 3-hour realisations of a 10,000 year North Sea sea state. The resulting probability distributions of the undisturbed wave measurements as well as the measured wave-in-deck loads are presented in this paper with focus on deriving the number of seeds and exposure durations required for a reliable estimate of design loads.The presented study is Part 2 of a combined study on guidance for the convergence and variability of wave crests and impact loading extreme values. The data set of Part 1 ([1]) is based on greenwater loads on a sailing ferry and the data set of Part 2 on wave-in-deck loads on a stationary deck box.  相似文献   

14.
通过充分利用DNV的Sesam软件和MSC.patran以及MSC.Nastran几个软件的优势,对一艘88m超规范甲板驳船进行了横向强度分析,找出船舶在不同工况下所对应的承载规律。并在频域内采用三维线性势流理论的波浪载荷计算方法对甲板驳船进行了波浪载荷直接计算,分析了不同工况先载荷分布的特点,并将计算结果与CCS规范和DNV规范中的结果进行了比较,为合理选取波浪载荷提供依据。  相似文献   

15.
A numerical model was developed in this study to simulate the wave diffraction caused by an arbitrarily shaped structure in the presence of bi-directional incident waves based on a higher-order boundary element method (HOBEM). Based on the developed model, the wave elevation quadratic transfer function (QTF) in bi-directional waves, which is defined as the second-order wave elevation caused by two incident waves of unit amplitude from two directions, can be determined. The developed model was subsequently used to investigate the wave interaction with a cylinder situated near a vertical wall. The image principle was applied to transform the original problem into an equivalent one of wave diffraction caused by two symmetrical cylinders in open seas exposed to bi-directional incident waves. The second-order wave run-up on the cylinder can then be determined using the wave elevation QTF obtained from an analysis of the equivalent problem. A detailed numerical analysis was then conducted. Numerical results revealed that the presence of the vertical wall can apparently disturb the wave diffraction process from the cylinder, and lead to significantly amplified second-order wave elevation within the region between the wall and cylinder. In addition, the respective contribution from the first- and second-order components to the overall wave elevation around the cylinder was discussed.  相似文献   

16.
This paper presents an alternative experimental study of the interaction of broken flows with a fixed structure, concerning the overtopping features and vertical loads over its deck. Wet dam-break tests were carried out to generate incoming flows. Synchronized measurements provided by high-speed cameras, water elevation and force sensors, were used to investigate the influence of tank length in overtopping behaviour and the patterns and loads formed by wet dam-break flows generated by different conditions. During some of the overtopping events analysed, large scale plunging waves were observed, hitting the deck directly and forming large air cavities. These events generated violent interactions with the structure, causing significant loads and chaotic behaviour over the deck, due to the combination of air cavity collapse, reactive splash and run-down. The present approach could be employed as an alternative to study interactions of broken incident flows with different types of fixed structures, allowing the acquisition of detailed data to compare analytical or numerical models.  相似文献   

17.
大开口型船舶波浪诱导载荷研究   总被引:5,自引:1,他引:4  
通过对某5万t级大开口型船舶的各种波浪诱导载荷长期预报,详细讨论了不同波浪散布图、装载工况、航速、水动力计算理论和短峰波对波浪诱导载荷长期预报极值的影响,指出了一些值得注意的问题,以期对类似船型的液体波浪诱导载荷预报提供有用的参考。  相似文献   

18.
李刚强  钱娣 《船舶》2011,22(5):31-35
在风力发电设备安装船的典型装载工况下,应用三维势流理论进行波浪诱导载荷长期预报,以主要载荷控制参数为依据进行设计波的选取,应用DNV的SESTRA模块将设计波载荷施加于船体进行船体结构直接计算分析。计算结果表明:船体结构设计均满足要求。  相似文献   

19.
Porous structures have been widely applied in the coastal and ocean engineering due to their wave energy dissipation mechanism. The macroscopic computational fluid dynamics (CFD) approach where the quadratic pressure drop condition of porous surface is introduced to model the wave interaction with porous cylinders. A series of CFD simulations of waves interacting with a single porous cylinder and the combined structure of a porous cylinder with a concentric inner solid column are performed, with corresponding tank tests conducted. The CFD method is compared with experiments, linear potential model, and the quadratic BEM (boundary element method) model. The effects of porosity and porous cylinder radius on wave force and wave heights inside porous cylinder are analyzed to evaluate the performance of porous shell reducing wave loads and wave surface elevation, and the wave force variation with incident wave amplitudes are also investigated. The results demonstrate that the established CFD model is reliable for engineering analysis and thereby being of great significance for reference purpose in the CFD simulations of waves interacting with porous structures.  相似文献   

20.
Semi-submersible platform has been widely used in offshore oil exploitation due to its excellent performance, but can be attacked by wave impact loads in extreme ocean environments. Determining wave impact loads accurately is of great significance to the design and operation of offshore structures. An experimental study was carried out to investigate the critical governing parameters for the horizontal wave impact loads on a semi-submersible. The wavelet denoising technique and the frequency response function method are employed successfully to remove the effect of noise and dynamic contamination from the experimental data. The strongly nonlinear characteristics of the wave impact load are demonstrated. The results show that wave impact events are governed by the upwell height and upwell velocity. Most major wave impact events occur where both the two parameters are large, and the upwell velocity is more dominant in the wave impact process. In general, larger parameters tend to result in larger peak pressures and higher probabilities of wave impacts. The motion behaviors of the platform are benefit to reduce the occurrence probabilities of wave impact events and maximum impact pressures, owing to the escape velocities following the wave direction and the rotations leading to the above-water structure away from the waves. The insights given in this study provide a motivation and foundation for developing a sophisticated prediction model of the wave impact load on floating platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号