首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
长圆柱结构在水流冲击和波浪作用下,后端不断产生周期性的漩涡脱落,其诱发的涡激振动会引起结构疲劳损伤,从而破坏结构。在圆柱结构迎流区和尾迹区加装导流板之后,通过阻碍上下剪切层动量交换,延迟边界层分离,从而有效抑制圆柱涡激振动现象。利用数值模拟研究了二维加装导流板的圆柱受力特性。采用k-ω湍流模型,对高雷诺数流动状态(Re=10~6)下的二维导流圆柱在不同迎流速度、及不同迎流角度下所受阻力和升力进行了计算。  相似文献   

2.
为研究涡流发生器安装间距对翼型水动力性能的影响,以NACA0018翼型为研究对象,基于计算流体动力学软件STAR-CCM+,采用SST k-ω湍流模型,研究涡流发生器在不同安装间距下对翼型在失速过程中的流动控制效果和激涡质量的影响。结果表明:在翼型失速之前,涡流发生器对翼型的水动力性能的影响不大;在翼型失速之后,涡流发生器在任意安装间距下均能抑制翼型表面的流动分离,增大翼型的升力系数,最大可增大16.7%。涡流发生器的安装间距会对其工作效果产生影响,存在最佳安装间距,且间距过大或过小都会影响涡流发生器的激涡质量,从而影响其流动控制效果。  相似文献   

3.
孔群是目前水下航行体通流口较为青睐的开口形式,主要目的是降低开口流动激励及噪声。为了研究孔群流动激励特性及其主要参数对流激噪声的影响,借助自航模试验平台对孔群模型进行了流激噪声试验。试验模型包括无孔模型、长圆孔群模型、圆孔群模型等,试验获得了孔群流动激励特性,以及孔群形式、尺寸等对流激噪声的影响程度。试验研究表明,孔群主要导致低频段流动激励恶化,且存在低频特征线谱,圆孔群流动激励优于长圆孔群;减小孔群单孔尺寸,有利于抑制线谱及宽带流动激励。  相似文献   

4.
[目的]湍流边界层(TBL)激励下的结构辐射噪声(也称"流激噪声")是水下航行体的重要噪声源,因此,对流激噪声数值计算方法的研究具有重要意义。[方法]基于LMS Virtual Lab数值计算软件,以Corcos湍流脉动压力频率波数模型作为输入,采用主成分分析(PCA)法和振动—声传递向量(VATV)法计算湍流边界层激励下平板结构的流激噪声,并对两种方法的正确性进行验证,比较分析两种方法的计算时间及得到的声压自功率谱密度(ASD)曲线。[结果]结果表明,这两种方法均可有效计算湍流边界层激励下的结构流激噪声,且计算结果基本一致;和PCA法相比,VATV法所占用的计算资源更少,能快速预报结构的流激噪声;相较于VATV法,PCA法还可以得到结构振动响应结果。[结论]该研究结果对水下结构流激噪声快速预报具有一定的参考价值。  相似文献   

5.
[目的]湍流边界层(TBL)激励下的结构辐射噪声(也称"流激噪声")是水下航行体的重要噪声源,因此,对流激噪声数值计算方法的研究具有重要意义。[方法]基于LMS Virtual Lab数值计算软件,以Corcos湍流脉动压力频率波数模型作为输入,采用主成分分析(PCA)法和振动—声传递向量(VATV)法计算湍流边界层激励下平板结构的流激噪声,并对两种方法的正确性进行验证,比较分析两种方法的计算时间及得到的声压自功率谱密度(ASD)曲线。[结果]结果表明,这两种方法均可有效计算湍流边界层激励下的结构流激噪声,且计算结果基本一致;和PCA法相比,VATV法所占用的计算资源更少,能快速预报结构的流激噪声;相较于VATV法,PCA法还可以得到结构振动响应结果。[结论]该研究结果对水下结构流激噪声快速预报具有一定的参考价值。  相似文献   

6.
近年来,水下航行器表面空腔结构流激振荡产生的低频线谱噪声问题日益突出,严重威胁其隐身性能。针对水下航行器流激噪声等实际工程问题,对不可压缩空腔流动噪声的产生机理和特性进行分析,综述其流动特点和控制技术发展趋势。首先,对空腔自持振荡的基本机理和特性进行概述,总结梳理空腔自持振荡反馈机理及其三维不稳定特性的研究进展;然后,介绍自持振荡激励下流激空腔共振的产生机制和基本特性,包括矩形/圆柱形空腔声模态共振和Helmholtz共振等;其次,对比分析主动、被动控制方法的研究进展情况;最后,展望不可压缩空腔流动的未来研究方向,建议开展空腔自持振荡反馈机理与三维不稳定性研究、空腔流激共振机理和声辐射特性研究以及不可压缩空腔流激噪声控制方法研究。  相似文献   

7.
《舰船科学技术》2013,(4):75-79
导流罩突出于主船体的底部或首部之外,可以明显降低水流对声呐探测性能的影响,但在一定程度上增大了航行阻力。本文通过数值方法研究某Ⅰ型船加装导流罩前后航行阻力的变化及导流罩对船速的影响。研究表明,加装导流罩后船底的最大压力和船的航行阻力有所增大,但由于导流罩的排水体积与整个船舶的排水体积相比要小得多,因此加装导流罩对船速影响不明显。为优化导流罩的外形结构和进一步降低航行阻力,提出了4种导流罩外形模型并对其流体动力学性能进行分析。对比结果表明,导流罩外形结构为头部流线型、尾部半圆型的综合性能最佳。  相似文献   

8.
张楠  李亚  王志鹏  王星  张晓龙 《船舶力学》2015,(11):1393-1408
孔腔流动中含有复杂的流体振荡,不但能够引起明显的噪声,而且会造成物体脉动压力和阻力的急剧增加,因而孔腔流动与流激噪声已经成为流声耦合研究领域的重要内容。文章首先对于Powell涡声理论进行了介绍,给出了涡声方程及其求解的详细推导过程,随后利用圆柱/机翼组合体与方腔流激噪声测试结果验证了计算方法的可靠性,最后采用大涡模拟方法结合Powell涡声方程数值计算了两型孔腔在不同水速下的流激噪声,并与中国船舶科学研究中心循环水槽试验结果进行了对比分析,结果表明数值计算方法能够较准确地预报孔腔流激噪声,并能展示孔腔内外涡旋结构。计算结果表明:在500 Hz以下的低频段,格栅1型孔腔的流激噪声显著高于格栅2型孔腔;在500 Hz-10 k Hz高频段,格栅2型孔腔流激噪声比格栅1型孔腔高,但随着流速的增高,两种孔腔流激噪声在高频段的幅值基本一致。这些现象与孔腔内的涡旋结构密切相关。文中对孔腔流激噪声的数值预报方法进行了验证,有益于理解孔腔非定常流动的物理机理,且为抑制孔腔流激噪声奠定了基础。  相似文献   

9.
开孔分布是影响空腔流动的一个重要因素.为了对开孔空腔流动有更深的认识,采用大涡模拟(LES)的方法,以Suboff艇体母线建立二维模型,研究4种开孔分布对空腔流动阻力,频谱特性及内外流交换的影响.对计算结果的分析表明,由于艇体表面的压力分布不同,孔附近产生纵向压力差,促使空腔内外流动交换,增加主艇体首尾压差阻力,进而使得总阻力增大.计算结果表明艇体阻力增加与内外流交换的密切相关,开孔位于中部时总阻力增量最小,内外流增量最小,开孔均匀分布时引起内外流流动交换剧烈,阻力增量最大,而且开孔引起总阻力波动幅值增加,频率分布特性发生相应的改变,开孔使得大幅波动频带变宽,可以预测噪声强度增加,频带变宽.  相似文献   

10.
开孔分布是影响空腔流动的一个重要因素。为了对开孔空腔流动有更深的认识,采用大涡模拟(LES)的方法,以Suboff艇体母线建立二维模型,研究4种开孔分布对空腔流动阻力,频谱特性及内外流交换的影响。对计算结果的分析表明,由于艇体表面的压力分布不同,孔附近产生纵向压力差,促使空腔内外流动交换,增加主艇体首尾压差阻力,进而使得总阻力增大。计算结果表明艇体阻力增加与内外流交换的密切相关,开孔位于中部时总阻力增量最小,内外流增量最小,开孔均匀分布时引起内外流流动交换剧烈,阻力增量最大,而且开孔引起总阻力波动幅值增加,频率分布特性发生相应的改变,开孔使得大幅波动频带变宽,可以预测噪声强度增加,频带变宽。  相似文献   

11.
舰艇中、高速航行时,声呐导流罩外边界层的壁面受脉动压力激励,引起罩壳结构振动,并向罩壳内辐射噪声。该噪声是声呐平台区自噪声的主要成分。准确描述罩壳外边界层壁面脉动压力特征,是开展声呐导流罩内场自噪声影响评价以及导流罩壳减振降噪设计的基础和依据。首先,介绍壁面脉动压力功率谱的壁压试验法、半经验模型法、数值模拟法的相关进展;针对边界层转捩区的脉动压力功率谱特征,引出缩尺模型试验研究的尺度效应问题。其次,针对壁面脉动压力的尺度效应问题,概述脉动压力功率谱尺度律及其由模型试验到实船应用的发展,并介绍与缩尺模型试验载荷相似的重要手段——人工转捩方法的研究概况。最后,对人工转捩方法在声呐导流罩边界层壁面脉动压力载荷相似性研究中的应用进行展望。  相似文献   

12.
应用涡流发生器抑制联体涡空泡研究   总被引:1,自引:1,他引:0  
为解决某散货船螺旋桨模型空泡试验中发现的桨一船联体涡空泡,以及由此而引起的船体强烈振动,文中通过试验进行了涡流发生器控制桨一船联体涡空泡的应用研究.研究结果表明:船体周围的流动是造成桨一船联体涡空泡的主要原因,通过改变桨的设计不能根本解决问题;通过安装适当的涡流发生器能够成功抑制桨一船联体涡空泡的产生,并使螺旋桨空泡诱导的船体脉动压力减小1/2~1/3左右.  相似文献   

13.
水下潜器在航行过程中,主要使用声呐来探测敌方舰艇以及自身位置.主声呐一般安放在潜艇首部位置,可分为主动声呐与被动声呐.在探测目标时,噪声是2种声呐系统都必须克服的干扰因素.针对自噪声中的流噪声,首先使用LES模型对水下潜器的外流场进行仿真计算.在获得流场中的脉动压力分布后,将其导入基于Lighthill声类比理论的声学软件ACTRAN中进行声场仿真计算,实现了对水下潜器首部声基阵区流噪声的数值预报.研究了航速、共形阵的安装位置和基阵单元安装面形状对声基阵区流噪声传播的影响.结果表明:航速越大,流噪声越大;增大声呐安装面与导流罩的距离以及使用较光滑的安装面,可以减小声基阵区流噪声的大小.  相似文献   

14.
随着舰艇管路系统中阀门、泵及弯管等部件流激噪声问题的日益突出,水动力流激噪声数值计算方法逐渐受到关注。针对阀门的流动诱导噪声问题,文章结合大涡模拟和Lighthill声类比理论,建立了流激噪声混合计算方法并对类阀空腔模型进行了数值模拟和验证。首先,流场采用大涡模拟计算了低马赫数下三维类阀空腔模型的非定常流动。然后,将流场计算结果导入ACTRAN,通过ACTRAN中基于有限元/无限元的Lighthill声类比理论对流噪声进行求解。最终将流激噪声计算结果与声学试验进行了对比分析。对比结果表明,该流激噪声混合计算方法可行且计算结果可靠,可应用于水动力噪声的研究。  相似文献   

15.
水下潜器在航行过程中,主要使用声呐来探测敌方舰艇以及自身位置。主声呐一般安放在潜艇首部位置,可分为主动声呐与被动声呐。在探测目标时,噪声是2种声呐系统都必须克服的干扰因素。针对自噪声中的流噪声,首先使用LES模型对水下潜器的外流场进行仿真计算。在获得流场中的脉动压力分布后,将其导入基于Lighthill声类比理论的声学软件ACTRAN中进行声场仿真计算,实现了对水下潜器首部声基阵区流噪声的数值预报。研究了航速、共形阵的安装位置和基阵单元安装面形状对声基阵区流噪声传播的影响。结果表明:航速越大,流噪声越大;增大声呐安装面与导流罩的距离以及使用较光滑的安装面,可以减小声基阵区流噪声的大小。  相似文献   

16.
为研究大气边界层对舰船空气尾流特性的影响,本文以典型驱护舰简化模型SFS2为研究对象,采用计算流体力学仿真(CFD)方法模拟了均匀来流条件和2种大气边界层条件下的尾流。Ansys Fluent的计算结果表明大气边界层中的速度梯度减小了入口处气流流动动能的输入,湍流特性中湍动能的存在又增加了能量的输入,故同时考虑速度梯度和湍流特性大气边界层条件时,预测的流场物理量数值位于均匀来流和速度梯度条件下预测值之间。本文研究成果表明在实际研究舰船空气尾流时大气边界层条件不可忽略。  相似文献   

17.
文章利用大涡模拟方法,建立了流激孔腔自噪声及辐射噪声预报方法,分析了腔深、来流速度及孔腔流向尺寸对剪切振荡特征的影响,并给出了流激孔腔近场辐射噪声特性。在此基础上探索了流激孔腔噪声控制方法,研究了孔腔开口加格栅对流激孔腔涡流场和噪声特征的影响。  相似文献   

18.
孔腔流动中包含着流动分离和失稳以及涡旋相互干扰等复杂的流动现象。孔腔涡旋流动引起的流体振荡能够引起脉动压力的显著增加从而产生强烈的噪声,在工程实际中备受关注。湍流脉动压力是流激噪声的重要来源,也是湍流研究中的基础性问题,对其进行数值计算研究是流声耦合领域的重要内容,而湍流脉动压力波数—频率谱的构建更是该领域的技术难点。文章采用大涡模拟方法(LES)对孔腔脉动压力进行了数值模拟,考察了四套网格和四种亚格子应力模型对计算结果的影响,并与试验结果进行比较,验证数值计算方法的可靠性。首先采用大涡模拟方法计算了孔腔的脉动压力,并与中国船舶科学研究中心的空泡水筒试验结果进行对比分析。接着详细地分析孔腔脉动压力,研究亚格子应力模型和网格数量对计算结果的影响。最后,对数值计算得到的脉动压力多元阵列结果进行时间/空间Fourier变换,构建了三维脉动压力波数-频率谱。该文工作对今后流激结构振动噪声的预报和流动控制研究奠定了基础。  相似文献   

19.
平进口喷水推进器的进口流道背部流动分离所导致的喷水推进泵进流畸变,是喷水推进泵性能与推进器性能下降的主要原因。基于涡流发生器(vortex generator, VG)/射流式涡旋发生器(vortex generator jet, VGJ)抑制流动分离的理论,该文选择某型进口流道模型,在低速风洞上进行模型吹风实验,以模拟平进口进水流道内流动。通过测量进口流道壁面压力和喷水推进泵入口面总压分布,解释了VG/VGJ提升推进性能的机理,获得了VG/VGJ结构尺寸和安装位置对流动控制效果的影响规律。在低进速比(IVR=0.5)工况下,布置合理的VG/VGJ能提高进口流道总压恢复系数和喷水推进泵进流面轴向速度均匀度,可以增加近5%的推力。  相似文献   

20.
通海阀在船舶海水系统中应用广泛,高压差条件下通海阀振动噪声问题突出。在大压差工况下,对某船海水系统通海阀内部流动进行分析。考虑海水对管道振动的影响,计算通海阀的结构"湿模态"。基于流场和模态数值计算结果,采用声学边界元法对该通海阀流噪声和流激振动噪声分别进行数值计算。将流激振动辐射噪声数值计算结果与流噪声数值计算结果对比,结果表明通海阀结构振动产生的辐射噪声较流噪声小100 d B以上,即流激振动噪声完全湮没在流噪声中,对该系统通海阀噪声进行治理时应该优先考虑流噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号