首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
城际轨道交通桥梁梁端扣件节点间距研究   总被引:2,自引:2,他引:0  
研究目的:建设城际轨道交通线,为节省土地全线基本以桥梁为主;为减少道砟粉尘影响环境,采用无砟轨道结构.当桥上采用CRTS I 型板式无砟轨道时,受线路小曲线半径的影响,梁缝处扣件节点间距不能满足规范650 mm的要求,影响桥上无砟轨道设计方案的实施.通过研究,提出可行的设计方案,解决梁端扣件节点间距存在的问题.研究结论:通过分析研究钢轨挠度、梁缝处断轨时钢轨弹性挤开量、板端混凝土剪切应力的设计参数、设计工况及评判指标,对梁端扣件节点间距处的轨道结构进行了受力分析,得出梁端扣件节点间距突破规范规定,按725 mm控制的设计方案可行的结论,解决了桥上采用无砟轨道时梁端扣件节点间距制约轨道设计方案的难题.  相似文献   

2.
研究目的:武广客运专线汀泗河特大桥等几座特殊结构的桥梁存在梁缝过大以及梁端悬臂长度过长的问题,桥梁梁端产生变形时,会造成无砟轨道扣件系统上拔力超过扣压力,影响旅客舒适度,严重时也将对行车安全构成威胁。通过研究,提出可行的设计方案,解决梁端轨道结构受力存在的问题。研究结论:通过在桥梁端部梁缝处引入过渡板的结构措施,建立了梁端过渡板结构的模型,分析了梁端转角和梁缝两侧桥梁竖向相对位移工况下有过渡板和无过渡板时轨道结构受力的区别,结果表明,过渡板能够减小扣件系统的最大压力、最大拉力和钢轨附加弯矩20%~80%,可以通过在端部设置过渡板的结构措施减小轨道结构的受力,保证无砟轨道系统正常工作。  相似文献   

3.
首先对日本、德国、UIC及我国标准中对铺设无砟轨道大跨度桥梁刚度进行分析,然后对大跨度桥梁梁端道床板稳定性、扣件上拔力计算、大梁缝处轨道结构设计、钢轨伸缩调节器区无砟轨道结构设计等桥上无砟轨道的关键问题进行研究分析和探讨,并提出了结构设计方法,为我国大跨度桥上铺设无砟轨道结构设计提供设计参考。  相似文献   

4.
商合杭高铁芜湖长江公铁大桥首次应用自主研发的高速铁路有砟轨道钢轨伸缩调节器与梁端伸缩装置一体化设备,采用多项新材料和新工艺,提高了梁端轨道刚度均匀性和几何平顺性,并提出梁缝一体化设备施工和养护维修技术要求,为我国大跨度有砟轨道桥梁梁缝一体化设备的设计、施工及养修提供借鉴。  相似文献   

5.
严寒地区高速铁路大跨度桥梁梁端扣件间距超限问题比较普遍,通过梁端无砟轨道结构的受力和变形分析,确定梁端扣件间距的最大限值,提出桥梁预延长、道床悬出梁端及减少轨道板端部扣件间距的设计措施,并通过哈大客运专线的典型工点,介绍梁端无砟轨道设计。结果表明,该设计措施简单实用,可解决大跨度桥梁梁端大扣件间距达1 000 mm的问题。  相似文献   

6.
为解决武广高速铁路大跨度桥上铺设无砟轨道时,遇到跨越大梁缝、梁端转角和位移过大、温度跨度太大需设置钢轨伸缩调节器、梁端轨道板稳定性、桥上铺设道岔等系列问题。采用理论计算分析并结合工况实际,充分考虑设计参数的最不利因素,武广高速铁路实现了最大跨度168m桥上铺设无砟轨道,在钢箱系杆拱桥上铺设无砟轨道,在桥上道岔区铺设无砟轨道等技术难题,解决了大跨度桥上铺设无砟轨道若干关键技术难题。  相似文献   

7.
目前,公路城轨两用大跨度斜拉桥钢桁梁正交异性板上铺设无砟轨道缺少相关规范及工程实例,理论储备和应用经验也不足。通过分析公路城轨两用大跨度斜拉桥的结构特点,结合重庆轨道交通6号线两座大桥无砟轨道的设计情况,为减少运营后的养护维修、降低轨道结构的二期恒载,提出了一种可在公路城轨两用大跨度钢桁梁斜拉桥上铺设的轻型无砟轨道结构型式。通过在大梁缝处设置抬轨装置后,可有效避免线路刚度不均、钢轨支点距离过大的问题,使钢轨在梁缝处的各项位移减小,降低了钢轨在梁端的应力集中,保证轨道交通行车的安全性。  相似文献   

8.
双块式无砟轨道桥梁梁端扣件系统力学分析   总被引:2,自引:0,他引:2  
研究目的:桥上无砟轨道结构梁端产生位移时将对梁缝附近扣件产生附加作用力,扣件系统作为无砟轨道结构的重要传力部件,扣件扣压力及垫层压缩变形量均有相应的限值要求,所以需对无砟轨道梁端位移产生的扣件附加力进行检算.研究结论:结合郑西客运专线桥上双块式无砟轨道结构建立有限元模型进行扣件附加力的检算,检算结果表明,梁端位移引起的扣件附加力将影响扣件型号的设计选择.  相似文献   

9.
制定梁端变形限值应考虑梁端无砟轨道静力强度和梁缝过渡段列车运行安全性、平稳性。运用室内模型试验和数值仿真分析,研究梁端转角、错台等变形对梁端扣件、轨道板稳定性的影响规律。数值仿真分析中扣件弹簧单元参数选取实测扣件刚度曲线。室内试验和仿真计算结果表明:仿真计算结果与室内试验实测结果基本吻合,有限元仿真计算可推广应用至实际应用中;梁端转角、错台变形引起的扣件附加力分布在梁缝两侧4个扣件内;梁端变形幅值和梁端伸出长度是影响梁端轨道结构强度的主要因素;随着转角、错台的增加,扣件附加力逐渐增加,且基本呈线性增长趋势;在转角工况下,梁端伸出长度越大,引起的扣件附加力越大;在错台工况下,梁端伸出长度对扣件附加力影响甚微;CRTSⅠ型板式无砟轨道在错台1.0mm情况下,产生最大上拔力和下压力,因此对于梁端CRTSⅠ型无砟轨道结构静力强度,错台1.0mm可作为设计限值条件。  相似文献   

10.
无砟轨道弹性地基梁板模型   总被引:4,自引:0,他引:4  
根据无砟轨道的结构和受力特点,采用弹性点支承梁模拟钢轨、板壳单元模拟无砟轨道各结构层,建立无砟轨道弹性地基梁板模型,进行无砟轨道各结构层的荷载弯矩计算,并与弹性地基叠合梁模型及弹性地基梁体模型进行对比.结果表明:弹性地基梁板模型更符合无砟轨道结构的受力特点,能够有效地反映承载层的空间弯曲变形;在该模型的钢轨上施加轮载可直接得到无砟轨道各承载层的纵、横向弯矩,既克服了弹性地基叠合梁模型忽略无砟轨道纵、横向变形协调条件,将纵、横向弯矩分开计算而造成的较大计算误差的缺点,也克服了弹性地基梁体模型层间约束强且计算繁琐的缺点.弹性地基梁板模型计算的结果与遂渝线实测结果基本吻合,验证了模型的合理性和有效性.  相似文献   

11.
客运专线钢轨断缝允许值研究   总被引:2,自引:1,他引:1  
钢轨断缝允许值直接影响客运专线桥上无缝线路设计方案。断缝台阶值和顺车轨弹性挤开量是影响车轮安全跨越钢轨断缝的最主要因素。从轨道受力和轮轨几何关系的角度建立计算模型,基于车轮通过钢轨断缝宽为70 mm的力学特征,计算钢轨断缝扩展时车轮跨越断缝的钢轨弹性挤开量和断缝台阶值。结果表明,客运专线钢轨断缝宽为96 mm的情况下,钢轨弹性挤开量和断缝台阶值与断缝70 mm时相同。钢轨断缝安全试验结果表明,在断缝宽度从20 mm扩展到138 mm的范围内,断缝台阶值和顺车轨弹性挤开量与断缝宽度没有明显关系,同时未发现因断缝的扩大而使行车安全受到威胁。由此确定客运专线车轮安全通过的钢轨最大断缝宽度为96 mm,考虑一定富余量,建议我国客运专线无砟轨道无缝线路钢轨断缝允许值为90 mm。  相似文献   

12.
研究目的:桥梁梁端转角将使无砟轨道扣件系统产生附加的上拔力或下压力,从而导致扣件系统失效,因此必须限制桥梁的梁端转角。为研究重载铁路桥梁单侧梁端转角限值,本文建立重载铁路梁端扣件系统受力分析有限元模型,研究梁端转角、梁缝处扣件间距、胶垫刚度、梁端悬出长度对梁端扣件受力的影响,并从限制扣件上拔力不超过弹条扣压力的角度提出不同胶垫刚度、不同悬出长度下的单侧梁端转角限值。研究结论:(1)梁缝处扣件间距对扣件系统受力影响较小,而胶垫刚度和梁端悬出长度对扣件系统受力影响较大;(2)扣件系统胶垫刚度越大、悬出长度越大,梁端转角限值越小;(3)桥梁梁端顺时针转角限值小于逆时针转角限值;(4)具体的梁端转角限值应根据扣件的设计参数确定,并进行检算;(5)本研究结论可为重载铁路无砟轨道结构及桥梁的设计提供参考。  相似文献   

13.
重载铁路弹性支承块式无砟轨道轨距保持能力计算分析   总被引:3,自引:0,他引:3  
弹性支承块式无砟轨道结构整体弹性较好,有利于降低轮轨相互作用力并减缓对隧道基底的振动冲击,是重载铁路长大隧道内较为适宜的轨道结构形式。但弹性支承块式无砟轨道采用两个独立的弹性块体支承钢轨,其保持轨道几何状态,尤其是保持轨距的能力相对较弱。本文通过有限元模型计算,结合室内相关试验结果,研究分析了重载条件下弹性支承块式无砟轨道轨距保持能力的影响因素。结果表明:增大支承块的长度、宽度以及埋深,可减小支承块横向间距扩大、轨距扩大、钢轨转角和支承块转角;当支承块埋深不变时,增大支承块高度对轨距扩大、钢轨转角及支承块转角的控制不利;增大支承块套靴侧向刚度,可减小支承块横向间距扩大、轨距扩大、钢轨转角和支承块转角;增大轨下垫板刚度和支承块下垫板刚度,轨距扩大不断减小,但轨下垫板刚度的增加主要是降低钢轨转角,对支承块的几何状态影响不大,而支承块下垫板刚度的增加主要是降低支承块横向间距扩大,对钢轨转角的影响较小。  相似文献   

14.
研究目的:既有桥上纵连板式无砟轨道研究多考虑桥梁整体温度变化而忽略温度梯度的影响,为探明高速铁路大跨度桥上纵连板式无砟轨道系统受力规律,本文基于长期实测温度场数据,利用统计方法获得结构具有概率保证的非线性温度模式,建立考虑钢轨-轨道板-底座板-梁体-桥墩的空间一体化有限元模型,选取沪昆客运专线某大跨连续梁桥工程实例,计算分析实测非线性温度模式下桥上各层轨道结构相对位移以及钢轨纵向附加力的分布规律。研究结论:(1)只考虑轨道板及底座板实测温度模式时,钢轨附加应力基本为0;(2)桥梁温度梯度会引起梁缝处钢轨附加应力的急剧增大,在研究桥上纵连板式无砟轨道时需考虑桥梁温度梯度的影响;(3)大跨度连续梁桥固结机构处水泥沥青砂浆变形会超过其实测极限变形位移,建议在连续梁固结机构上方同样设置剪力钢筋;(4)无砟轨道断板会导致钢轨附加应力急剧增大,因此应严格限制纵连板式无砟轨道断裂的发生,若需更换轨道板及底座板时,应在合龙温度范围进行更换;(5)本研究结果可为大跨度桥上纵连板式无砟轨道的设计与改进提供参考。  相似文献   

15.
客运专线无砟轨道无缝线路锁定轨温确定方法的探讨   总被引:2,自引:0,他引:2  
根据客运专线无砟轨道无缝线路的结构和受力特点,采用现场试验、调研和动力仿真等方法对既有无砟轨道无缝线路锁定轨温的影响因素进行系统分析。研究结果表明:锁定轨温降低后,无缝线路温升幅度增大,温降幅度减小,将导致无缝线路施工和维护困难、钢轨发生碎弯几率增大等问题,影响高速列车运行的平稳性和安全性;在确定客运专线无砟轨道无缝线路锁定轨温时,除了要对无缝线路的强度、稳定性等进行常规检算外,还应结合车辆-轨道耦合动力学理论进行升温条件下钢轨碎弯变形的检算,从而确定合理的锁定轨温范围。为此建议对无砟轨道无缝线路碎弯变形的产生机理、不利影响及钢轨的合理断缝允许值进行静、动力学理论分析和试验研究。  相似文献   

16.
高亮  曲村  陶凯  乔神路 《铁道学报》2011,33(1):76-82
基于纵横垂向空间耦合模型,对42号无砟轨道无缝道岔钢轨的纵向受力及变形、道岔钢轨的横向变形、无缝道岔允许轨温变化幅度以及限位器的铺设与养护方法等进行深入研究。结果表明:该设计方法对客运专线42号无砟轨道无缝道岔实际铺设情况考虑得较为详尽,能够较为准确的计算道岔尖轨跟端处钢轨横向变形,可对限位器结构的铺设与养护维修提供指导意见,适用于客运专线42号无砟轨道无缝道岔的设计与检算。该设计方法可为客运专线42号无砟轨道无缝道岔的设计与养护维修提供参考。  相似文献   

17.
2008年3月19日,铁道部建设司在北京主持召开了《客运专线无砟轨道无缝线路设计标准研究》评审会。该项研究是由中国铁道科学研究院铁道建筑研究所主持承担的铁路工程建设标准项目。项目组采用理论分析、室内试验、现场观测的方法,对钢轨强度、混凝土梁伸缩温差、钢轨断缝允许值、钢轨伸缩调节器布置、桥上无缝线路纵向力计算方法、  相似文献   

18.
根据桥上CRTSⅡ型轨道结构形式,考虑高速列车与无砟轨道、桥梁之间的相互作用,建立基于新型车辆单元和无砟轨道-桥梁单元的车辆-无砟轨道-桥梁纵垂向耦合振动模型。运用有限元方法和Lagrange方程,分别推导车辆单元、无砟轨道-桥梁单元的刚度、质量和阻尼矩阵,建立有限元数值方程。考虑轨道平顺和轨道不平顺两种工况,求解有限元数值方程,分析梁端和跨中动力特性。计算结果表明,该模型及程序能够反映轨道结构的竖向振动响应。施加轨道不平顺,轮轨作用力增大了50%左右,梁端处钢轨的竖向加速度增加了6.5倍左右,跨中处从10 m/s~2增加到30 m/s~2。每种工况下,梁端和跨中处轨道结构的竖向位移、竖向加速度分别逐渐减小,梁端处轨道结构的振动及其位移变化都比跨中处大。  相似文献   

19.
基于列车—轨道—桥梁耦合动力学理论、无砟轨道与桥梁间纵向相互作用理论及无砟轨道温度场和温度效应理论,建立考虑服役期间无砟轨道钢筋与混凝土的相互作用、无砟轨道混凝土的开裂与闭合效应、无砟轨道荷载时变特性共同作用的桥上纵连板式无砟轨道疲劳寿命预测方法。以高速铁路32m多跨简支箱梁桥上无砟轨道为例,运用该方法研究组合荷载下桥上纵连板式无砟轨道的疲劳特性。结果表明:为了较准确地预测服役期间桥上纵连板式无砟轨道的疲劳特性,必须同时考虑列车荷载、温度荷载及温度梯度荷载的共同作用;桥上纵连板式无砟轨道的疲劳寿命由梁端处的轨道控制,梁端处轨道板底面混凝土和底座板顶面混凝土更易发生疲劳破坏;气候环境和无砟轨道裂缝间距对桥上纵连板式无砟轨道各部件的疲劳特性有很大影响,武汉地区无砟轨道的轨道板混凝土、底座板钢筋、底座板混凝土的疲劳寿命分别是哈尔滨地区的2.5,3.9和222.6倍,当裂缝间距由2倍扣件间距变为1倍时,无砟轨道钢筋的疲劳寿命增加10倍以上。  相似文献   

20.
由于长大简支梁桥上无缝线路,在温度荷载和车辆荷载作用下的轨道和桥梁结构各项变形较大,简单的桥上无缝线路计算模型和检算项目已不满足要求。为了能够更好地分析其受力与变形,更详细地对其进行计算和检算,采用有限元方法建立了长大简支梁桥上有砟轨道无缝线路纵横垂向空间耦合模型。所建立的空间耦合模型,充分考虑了长大简支梁桥上有砟轨道无缝线路各部分的细部结构和其对整体力学特性的影响。采用该模型可以计算钢轨附加力,也可以对梁缝纵向变化量、钢轨横向变形、桥梁竖向挠度、梁端转角和梁轨相对位移等进行计算。计算结果详细,检算项目全面,方法便于设计与施工使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号