首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
针对路基上CRTSⅠ和CRTSⅡ型板式无砟轨道的结构特点, 分别建立了相应的有限元模型, 研究了路基不均匀沉降作用下不同板式无砟轨道受力与变形的传递规律及其影响。分析结果表明: 路基不均匀沉降发生后, 上部轨道结构的垂向变形具有一定跟随性, 变形与沉降曲线相近但不完全重合; 底座板伸缩缝的存在对轨道结构的受力和变形有较大影响, 在20 mm/20 m沉降条件下, CRTSⅠ、CRTSⅡ型板的垂向位移分别达沉降幅值的90%和60%, 相对CRTSⅠ型板而言, 沉降对CRTSⅡ型板的垂向位移影响较小, 但后者更易形成较大范围的离缝, 离缝长度达6.52 m, 为CRTSⅠ型板离缝长度的1.92倍; 当沉降幅值位于底座板中心时, 离缝主要集中在伸缩缝、沉降端部和沉降中心, 但当沉降幅值位于伸缩缝处时, 离缝主要集中在伸缩缝两侧和沉降端部; 沉降波长或幅值改变时, 会导致最大离缝位置出现偏移; 在路基不均匀沉降作用下, CRTSⅠ型板的底座板纵向最大拉应力均大于轨道板的纵向最大拉应力, 而CRTSⅡ型板的情形则相反; 从混凝土强度考虑, CRTSⅠ型板沉降控制标准应以底座板的拉应力控制为主, 而CRTSⅡ型板应以轨道板和底座板的拉应力综合控制。   相似文献   

2.
由于京广高速铁路某路基地段的CRTSⅡ型板式无砟轨道支承层施工未采用钢筋混凝土结构,联调联试过程中发现受温度变化、列车制动、起动及行车振动等的综合影响,可能会出现开裂病害现象。为确保高速铁路运营安全,决定将交界处的CRTSⅡ型板式无砟轨道C15素混凝土支承层变更为C40钢筋混凝土底座板,以加强CRTSⅡ型板端部底座,防止因轨道板温度力、制动力等纵向力导致CA砂浆层及底座开裂。详细介绍了处理方案和详细的施工工艺措施。支承层变更方案得到了成功应用,对运营中的类似高铁轨道系统病害整治具有很好的参考价值。  相似文献   

3.
我国高速铁路中普遍应用了CRTSⅡ型板式无砟轨道,使用中发现CRTSⅡ型板式无砟轨道普遍存在底座板开裂和水泥乳化沥青砂浆填充层与轨道板间开裂现象,分析了产生原因并分别提出了处治措施。对于底座板裂缝大于0.3mm,建议采取扩槽、涂抹弹性树脂材料表面封闭处理;对于水泥乳化沥青砂浆填充层与轨道板间的开裂,建议使用专用的灌浆材料、采用低压注浆的原理对砂浆离缝进行整治。可为类似工程提供有益借鉴。  相似文献   

4.
高速铁路板式无砟轨道在施工和服役过程中,结构材料参数可能发生改变,并与其工程设计值有较大差别,这种改变对轨道板与砂浆层之间界面的损伤有何影响,目前还缺乏较深入的研究。本文建立了CRTS Ⅱ型板式无砟轨道有限元模型,采用内聚力模型模拟界面的损伤行为,分析了在90℃/m极端温度梯度荷载作用下,轨道板弹性模量、砂浆层弹性模量和界面黏结强度对轨道板与砂浆层界面损伤的影响。结果表明:轨道板和砂浆层弹性模量对界面损伤的影响规律基本一致,高弹性模量恶化了界面受力情况,将加大界面损伤程度和损伤区域;界面黏结强度对界面损伤有显著的影响,当黏结强度小于其设计值时,界面损伤随黏结强度降低而快速恶化。  相似文献   

5.
针对中国高速铁路CRTSⅡ型板式无砟轨道界面初始黏结缺陷导致轨道结构温度变形进一步增大的现象, 基于电荷耦合器件(CCD)工业相机与计算机图片处理技术, 建立了板式无砟轨道界面空隙率试验检测系统, 测试了3块CRTSⅡ型板式无砟轨道板与水泥沥青(CA)砂浆界面的初始空隙率; 在有限元模型中以界面空隙率定量表征了界面的黏结状态, 即根据界面空隙率检测结果, 考虑界面存在一定量值的初始空隙率, 并假设这些空隙均匀分布在整个界面上, 系统分析了界面初始黏结缺陷对板式无砟轨道温度变形的影响。研究结果表明: 3块轨道板样本界面的初始平均空隙率为22.3%, 界面四周的初始黏结状态明显差于轨道板界面中心; 在正、负竖向温度梯度作用下, CRTSⅡ型板式无砟轨道分别呈现中心上拱和四周翘曲的温度变形模式; 正温度梯度作用下轨道板最大温度变形与不考虑界面初始黏结缺陷相比增大了7.8%~10.1%, 且随着界面初始空隙率的进一步增大, 轨道板最大上拱温度变形呈线性增大趋势; 负温度梯度作用下, 界面空隙率的增大对轨道板温度变形的影响不大; 在分析CRTSⅡ型板式无砟轨道温度变形时应适当考虑轨道板与CA砂浆的界面初始黏结缺陷, 研究结果可为分析CRTSⅡ型轨道板上拱温度变形机理提供参考。   相似文献   

6.
对于长大桥梁而言,CRTSⅡ型板式无砟轨道底座板的施工工艺复杂而繁琐。以石武客专无砟轨道底座板为研究对象,从施工角度对底座板施工的前期准备、质量要求、段落划分以及施工工序进行了详细描述,并进行了底座板施工应力监控研究。研究结果表明:对于长大的底座板结构而言,温度变化、混凝土的水化热及收缩徐变是导致混凝土开裂的原因;收缩徐变系数和摩擦系数的变化对结构应力影响较小,可以通过掺加钢纤维或采用分级加载技术等措施来控制裂纹产生和减小裂纹宽度。相关经验可为轨道板铺设、精调,水泥乳化沥青砂浆灌注施工奠定良好基础。  相似文献   

7.
为分析冻融循环作用下混凝土材料的静态力学性能,并探讨立方体试块轴向压缩破坏过程和形态,依据慢冻法试验标准开展了混凝土冻融循环试验,测定未冻融、冻融25次、冻融50次及冻融75次混凝土的单轴压缩应力应变曲线和劈裂拉伸强度;结合孔隙结构的电镜扫描图像分析其劣化成因;同时利用ABAQUS有限元软件及混凝土损伤塑性模型对混凝土立方体试块的轴向压缩破坏过程及破坏形态进行数值模拟.试验结果表明:混凝土抗压强度、弹性模量和抗拉强度随冻融循环次数的增加而降低,变形增大;冻胀作用导致混凝土内部结构疏松造成其宏观力学性能劣化;数值模拟表明,立方体试件在压缩过程中竖直方向缩短、水平方向膨胀,裂缝在产生最大拉伸应变的区域扩展并最终形成四角锥破坏形态.  相似文献   

8.
为了研究列车疲劳荷载作用下CRTSⅢ型板式无砟轨道结构横向受力性能,采用实际工程施工现场的材料及施工工艺,利用足尺模型,切割制作6个单承轨台或双承轨台的板式无砟轨道试件,进行橡胶板模拟路基上板式无砟轨道结构的横向弯曲疲劳试验,得出列车疲劳荷载引起的横向弯矩作用下板式轨道试件的应力、变形分布规律及疲劳损伤的发展形态.试验结果表明,在15.0~255.0 kN和42.5~425.0 kN疲劳荷载作用下,模拟路基上单承轨台和双承轨台的试件板中位置轨道板上表面先出现纵向裂缝,随后轨道板横向预应力筋锚固端出现由锚头向轨道板上表面的劈裂裂缝,累计疲劳500万次后,三点弯曲模式下轨道板-充填层复合板试件的自密实混凝土开裂荷载和层间滑移荷载分别减小20%~30%和25%以上,疲劳损伤、层间离缝对轨道板与充填层的协同工作性能有不利影响.   相似文献   

9.
为研究土质路基上纵连板式无砟轨道动力性能,建立了列车-路基上纵连板式无砟轨道耦合动力学模型.模型中,将纵连板式无砟轨道及路基视为空间层状粘弹性体,采用连续体建模法,建立其运动微分方程并用Galerk in法进行离散变换;分析了CRH2-300动车组以300、350 km/h速度运行时,路基上纵连板式无砟轨道的动力特性,并与京-津城际铁路实测结果比较.结果表明:水泥沥青砂浆最大动应力为46.8~50.5 kPa,小于砂浆层设计指标值15 MPa;动变形随深度衰减较慢,动应力随深度衰减较快;单个转向架产生动应力的影响范围沿线路纵向约为5 m、横向约为3.25 m;轨道板、水泥沥青砂浆层和支承层沿深度方向的变形分布差别不大.  相似文献   

10.
板式无砟轨道技术是高速铁路的关键技术,而底座板起到主要的承载作用;底座板施工的质量直接影响到水泥乳化沥青砂浆充填层厚度,水泥乳化沥青砂浆充填层如果厚度不能满足规范要求不仅造成返工,浪费和影响到施工工期,而且对后期运营安全埋下隐患。  相似文献   

11.
连续道床板拉伸开裂模型试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为验证连续式无砟轨道温度裂缝型式和温度力荷载取值方法的正确性,针对目前高速铁路上普遍采用的连续道床板及底座板结构,考虑混凝土标号、配筋率及钢筋直径等影响连续无砟轨道设计的关键因素,设计了450 mm×80 mm×80 mm、中心配置直径10 mm带肋钢筋的混凝土构件,利用万能试验机进行张拉,模拟了连续道床板降温时的裂缝开展过程,测试了构件开裂前后的轴力及应力重分布情况.测试结果表明,张拉过程中,裂缝呈现出不稳定和稳定两种状态;裂缝出现后,钢筋与混凝土应力分布不均匀,裂缝位置处的钢筋应力增加至300 MPa以上;构件在全断面开裂后轴力会突然降低,开裂前后瞬间的轴力超过或达到了混凝土开裂轴力.对于采用C40混凝土的连续道床板,为保证结构的安全使用,应配置0.9%以上的钢筋使之满足强度要求,并将裂缝控制为不稳定裂缝状态,作为设计荷载之一的最大温度力荷载建议采用开裂后的轴力进行计算.   相似文献   

12.
多雨地区双块式无砟轨道湿态混凝土力学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
长期处于水环境中的双块式无砟轨道内部存在不均匀的湿度场,而湿度会对轨道结构的力学性能产生一定的影响. 为研究水环境中双块式无砟轨道内部不同湿度状态下混凝土宏观力学性能,结合水环境中双块式无砟轨道的湿度分布情况,建立了混凝土基质纳观组分(C-S-H)分子动力学模型,对混凝土基质展开多尺度计算,并进行两级均匀化分析. 结果表明:水环境中的双块式无砟轨道结构表层湿度的梯级分化明显,轨道内部的湿度差最高可达38.41%;混凝土的弹性模量和泊松比随饱和度的增加而增大;混凝土饱和度由0增加到100.00%时,支承层、道床板及轨枕混凝土弹性模量的增幅分别可达35.0%、19.5%、16.2%.   相似文献   

13.
无碴轨道动力学理论及应用   总被引:2,自引:0,他引:2  
根据车辆-轨道耦合动力学理论,建立了列车与路基上无碴轨道空间耦合动力学模型.模型中将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,将轨道板及混凝土底座视为弹性基础上的弹性薄板.推导了路基上无碴轨道的运动方程.用上述模型及方程分析了遂渝线无碴轨道综合试验段路基上板式轨道及过渡段的动力学性能.结果表明,快速客车、重载以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、以及CA砂浆和路基面动应力等动力学指标均小于许用值.该无碴(板式和双块式)轨道与有碴轨道过渡段在客运列车作用下钢轨挠度变化率均小于许用值(0.300mm/m),在货物列车作用下略大于许用值.  相似文献   

14.
为获得服役期间桥上纵连板式无砟轨道疲劳应力谱计算理论,考虑无砟轨道钢筋与混凝土的相互作用、无砟轨道混凝土的开裂与闭合效应、无砟轨道荷载的共同作用和时变特性,分别建立和验证了桥上纵连板式无砟轨道温度场计算模型、多尺度高速列车-纵连板式无砟轨道-桥梁三维有限元耦合动力学模型、纵连板式无砟轨道-桥梁-桥梁墩台纵向相互作用模型,并在此基础上,提出了桥上纵连板式无砟轨道疲劳应力谱计算理论.研究结果表明:利用提出的疲劳应力谱计算理论可得到服役期间桥上纵连板式无砟轨道各部件钢筋与混凝土应力时程曲线及疲劳应力谱;考虑多种荷载工况,能深入探讨桥上纵连板式无砟轨道疲劳破坏机理和影响规律;计算理论可为丰富和完善我国无砟轨道设计理论提供重要依据.   相似文献   

15.
板式无碴轨道垫层CA砂浆研究与进展   总被引:4,自引:0,他引:4  
CA砂浆是板式无碴轨道结构弹性调整层的核心。从板式无碴轨道CA砂浆材料物理力学性能、耐久性及耐候性等多方面阐述了其组成、结构及其与性能之间的相互影响,指出当前板式无碴轨道CA砂浆的冻融、老化等破环机理,并提出其防治措施。  相似文献   

16.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

17.
为了把握基床表层含沥青混凝土层的温度场特性,采用瞬态传热的有限元分析方法,对寒区高铁无砟轨道结构温度场时空分布规律及沥青混凝土层的影响进行了分析. 首先,建立了基于哈尔滨-齐齐哈尔客运专线无砟轨道结构(CRTS)的温度场数值模型;然后,运用现场观测结果对数值模型进行了校核;最后,运用对比分析方式评估了基床表层沥青混凝土层的温度场特性,以及无砟轨道结构特征横截面与特征点位的温度分布的时变规律. 结果表明:东北地区无砟轨道结构温度场具有明显的非均匀性,其横向温度分布呈现双U型分布特征,温度梯度呈现非线性特性,且随着季节变换呈现较复杂的正负梯度交替变化;东北地区无砟轨道结构对路基温度的影响深度约为0.4 m,月影响深度约为2.5 m,年影响深度可达4.0 m;基床表层铺设的薄层沥青混凝土对路基起到了良好的保温作用,会使得基床表层的日平均温度提高1~7 ℃左右,而寒区无砟轨道结构温度场的分布规律不会显著改变.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号