首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
为了保障高速列车的安全可靠运行,文章以存在未知扰动和输入时滞的高速列车制动系统为被控对象,设计了新的高速列车制动系统模型参考自适应控制策略,实现了对给定速度曲线的渐近跟踪。首先,通过分析高速列车制动系统的原理和动态特性,建立了存在扰动和时滞的高速列车制动系统状态空间模型;其次,充分利用模型参考自适应控制善于处理系统不确定性和外界扰动的能力,结合状态预测,设计了状态反馈控制器,使其在存在未知扰动和输入时滞时仍能实现对给定速度曲线的渐近跟踪;最后基于CRH380AL型高速列车在济南—青岛段的数据开展仿真验证,仿真结果表明文章设计的高速列车制动控制系统具有理想的稳定和渐近跟踪特性,能克服未知参数和有界扰动的影响,具有良好的鲁棒性。  相似文献   

2.
针对高速列车运行过程中因不确定运行阻力和模型误差等因素产生的系统误差,提出了新的基于特征模型的高速列车自适应误差补偿控制策略,实现了其对给定目标速度曲线的渐近跟踪。首先通过动力学分析,基于特征建模方法和参数辨识,建立了存在系统误差的高速列车特征模型;其次,利用扩张状态观测器对系统误差的估计能力,设计了基于特征模型的高速列车自适应误差补偿控制器,并结合广义最小方差方法对控制器参数进行了优化,使其在存在系统误差时仍能实现对给定速度曲线的渐近跟踪。该控制策略能够有效处理系统误差带来的不确定性,提高控制精度,从而保障高速列车的安全可靠运行。为了验证本文所提方法的有效性,以CRH380A型高速列车为被控对象进行仿真实验。仿真结果表明设计的补偿控制方法在列车存在未知系统误差的情况下仍能保证理想的控制性能。  相似文献   

3.
针对执行器故障下高速列车的速度和位移跟踪控制问题,考虑模型参数的不确定性,引入自适应控制技术,设计了列车的自适应容错跟踪控制器.该控制器不依赖于列车模型参数的先验知识,不需要故障检测与诊断设备,可以有效克服列车模型参数未知以及执行器故障的影响,实现执行器故障下高速列车对目标速度和位移曲线的精确跟踪.基于Lyapunov稳定性理论证明了闭环系统的稳定性.仿真结果说明该控制器具有良好的容错跟踪控制能力.  相似文献   

4.
为实现高速列车黏着控制中对期望蠕滑速度的精确跟踪,提出了一种新的蠕滑速度跟踪控制方法.首先考虑牵引/制动动态建立了列车黏着控制系统动力学模型,并将其描述为一个串级非线性系统;然后采用动态面控制方法,并引入自适应技术估计列车模型参数和系统集总不确定性上界,设计了基于自适应动态面的高速列车蠕滑速度跟踪控制策略.所设计的控制...  相似文献   

5.
针对高速列车在外部干扰下的速度控制问题,本文提出基于Koopman算子的高速列车高维线性模型的建模方法,并设计一种结合扩张状态观测器(ESO)与基于Koopman算子的模型预测控制(K-MPC)的复合控制器(ESO-K-MPC)。利用扩展动态模式分解算法来近似无限维线性Koopman算子,建立具有动态非线性特性的高速列车动力学高维线性模型;引入模型预测控制,设计扩张状态观测器,对系统总扰动进行估计与补偿,构建基于ESO-K-MPC的高速列车速度控制系统,再设计控制器与控制算法;结合CRH3列车参数和郑西高铁华山北站—西安北站实际线路数据,分别在没有扰动和白噪声干扰下对设计的控制方法与算法进行仿真研究。仿真结果表明:基于Koopman的高速列车建模对位移与速度的预测精度相比于线性状态空间模型分别提高了83.86%与87.40%;ESO-K-MPC可以准确估计与补偿高速列车运行中受到的干扰,控制输出曲线与期望曲线几乎重叠,实现了列车运行期望曲线的高精度跟踪。  相似文献   

6.
针对城轨列车电机-齿轮传动系统中电气、机械部分难以耦合而导致各自独立研究问题,综合考虑电机非线性磁导和齿轮时变啮合刚度,建立基于电机等效磁路网络模型(PNM)的城轨列车牵引传动系统机电耦合动力学模型.在此模型上,考虑定子匝间绕组短路故障及鼠笼转子导条断裂故障,求得故障下机电耦合系统的动态响应;基于电磁转矩进行故障诊断,并与矢量控制单电机模型的诊断结果进行对比研究.研究成果表明:在低频域,PNM的电磁转矩频谱比矢量控制单电机模型的频谱在故障频率处幅值更大,更易于识别故障;在高频域,PNM电磁转矩诊断方法能识别到更为明显的电源频率的高次谐波分量,在机电耦合系统的故障诊断中更有优势;基于电磁转矩的故障诊断方法可以有效诊断城轨列车机电耦合系统故障,为无传感器的故障检测技术提供理论支持.  相似文献   

7.
为研究机电耦合作用下齿轮箱体和牵引电机的振动幅值、频谱分布及其随高速列车行驶速度的变化趋势, 分析了三相逆变器输出电压谐波频率分布与牵引电机谐波转矩, 建立了传动系统扭振模型; 基于直接转矩控制理论与车辆系统动力学理论, 搭建了牵引电机控制模型和高速列车多体动力学模型; 通过Simulink和SIMPACK联合仿真平台对比了恒力矩输入与含有谐波转矩的力矩输入模型, 分析了不同速度下牵引电机谐波转矩对高速列车齿轮箱体和牵引电机振动特性的影响。分析结果表明: 当高速列车以250 km·h-1的速度匀速运行时, 齿轮箱体大齿轮上方纵向振动、小齿轮上方纵向与垂向振动受牵引电机谐波转矩影响显著, 在700 Hz主频处振动加速度幅值显著增大, 该频率恰为牵引电机输出转矩基波频率的6倍; 在谐波转矩的影响下, 牵引电机在52 Hz主频处横向振动加速度幅值增加52.78%, 在49 Hz主频处垂向振动加速度幅值增加18.95%;随着高速列车速度的增加, 齿轮箱体纵向与牵引电机各向振动加速度逐渐增加, 牵引电机谐波转矩对齿轮箱体纵向振动加速度均方根的影响逐渐减小, 在6倍基波频率处, 齿轮箱体小齿轮上方和牵引电机纵向与垂向振动加速度均先增大后减小, 在速度为250 km·h-1时达到极大值, 且齿轮箱体和牵引电机的垂向振动受6倍基波频率谐波转矩的影响比纵向振动更为明显, 而其横向振动特性几乎不受谐波转矩的影响。   相似文献   

8.
为提高城市轨道交通列车自动驾驶(automatic train operation,ATO)系统跟踪给定运行曲线的精度,基于子空间辨识方法,利用列车运行的历史数据,建立与实际运行状态相吻合的非线性子空间预测控制模型,设计子空间预测控制器,实现模型辨识数据和参数在线更新.运用MATLAB软件对比分析传统动力学模型与子空间预测控制模型的跟踪能力.结果 表明:子空间预测控制模型在速度、位移、加速度的跟踪精度上有明显优势,牵引/制动特性更加缓和.子空间预测控制模型可以保证列车运行安全、准时,并提高乘客乘坐舒适性.  相似文献   

9.
针对高速列车自动驾驶系统受到时变外部扰动和受限状态的情况,提出一种基于迭代学习控制的自适应控制算法. 基于Lyapunov 函数,利用列车运行过程中的状态偏差,推导出自适应迭代学习控制律和参数学习更新律. 构造类Lyapunov 函数的复合能量函数,通过迭代域的差分,证明其差分负定性和收敛性. 采用所提控制算法对列车跟踪性能进行计算机仿真和实例仿真验证,结果表明,所提出的自适应迭代学习控制算法对列车期望曲线跟踪具有较高的精度和较快的收敛速度,能够在较短的迭代次数实现对期望曲线的精确跟踪.  相似文献   

10.
为解决高速列车运行过程中因轨面情况改变,导致列车没有达到最大黏着利用而出现空转或滑行等问题,设计了一种基于最大黏着系数的滑模自抗扰(SM-ADRC)黏着控制器;考虑轮轨间黏着特性的复杂、时变与非线性等特点,基于黏着机理分析,建立了轮轨间牵引系统的力学模型;采用极大似然估计(MLE)方法对不同轨面的相关参数进行辨识,计算了当前轨面的最大黏着系数,保证列车始终能达到最大黏着利用;通过引入滑模算法改进了自抗扰控制(ADRC)中非线性误差反馈控制律部分,设计了一种SM-ADRC黏着控制算法,利用Levant跟踪微分器减小初始跟踪误差,利用扩张状态观测器(ESO)估计和补偿系统总的外部扰动,由滑模控制提高系统的鲁棒性;采用MATLAB软件对CRH380A型高速列车进行仿真,在轨面情况改变时,由SM-ADRC黏着控制器控制列车跟踪设定速度,并将其与比例积分微分(PID)控制器、滑模控制器、ADRC的仿真结果进行对比。仿真结果表明:干燥轨面的最大黏着系数是0.160,16 s时辨识出真值;潮湿轨面的最大黏着系数是0.106,18 s时辨识出真值;ADRC的速度跟踪误差范围为±1 km·h-...  相似文献   

11.
基于自适应观测控制器设计了三相交流感应电机调速系统,该控制器在未知电机转子电阻和负载及不需要测量磁链情况下,可同时且不受限制地单独控制电机转速(转矩)和磁链.控制器只测量转速、电压和电流信号自适应估计磁链和未知参数.用该控制方法设计了两相坐标轴磁场定向电机模型,系统不存在非线性,因此适合离散化和DSP系统的数字实现.  相似文献   

12.
高速列车运行环境复杂多变,现有的给定运行速度目标曲线主要考虑列车运行的安全性和正点性,难以改善列车的其他运行性能。为了满足高速列车日益增加的行车需求,并改善列车的运行性能,针对安全、节能、正点及舒适多个目标,考虑轮轨间最优黏着,提出一种改进的多目标运行速度优化方法。首先,在满足区间限速以及列车动力学模型约束的前提下,建立安全、节能、正点、舒适4个评价指标,构成高速列车运行过程多目标优化模型;其次,在节能模型中考虑轮轨间黏着的影响,优化牵引/制动力使得其保持在最优黏着范围内,节约运行能耗;最后,采用基于参考点的非支配排序的优化算法(NSGA-Ⅲ)对多目标运行速度曲线进行优化。对真实线路的仿真验证表明,本文提出的考虑轮轨黏着的优化效果显著提高,尤其在节能方面;优化算法相较于GA和NSGA-Ⅱ,NSGA-Ⅲ算法在收敛效果和收敛速度上均为更优。  相似文献   

13.
研究了一类非线性时滞系统的故障分离问题.文中所讨论的故障是未知卡死故障,这就使得故障检测和估计问题变得更加的复杂.根据自适应未知输入观测器的设计理论和研究方法给出了针对此类系统的故障分离和估计的方法 .在满足Lipschitz条件下,提出了故障分离观测器和自适应诊断观测器.  相似文献   

14.
随着高速列车速度不断提高牵引齿轮箱服役环境越发复杂,齿轮箱服役性能也面临更大的考验。基于齿轮箱内、外及耦合激励对其振动响应的影响,国内外学者对高速列车齿轮箱的振动特性和故障诊断做了大量的研究;针对已有的研究成果,主要从齿轮箱强度、可靠性及寿命、箱体故障诊断及监测方面归纳总结,详细阐述了高速列车齿轮箱振动特性分析及故障诊断所采用的方法和研究现状,并且对未来重点研究方向提出建议和展望。  相似文献   

15.
针对现行高速列车动力系统选型设计工作量大、过程繁琐、效率低等现状,把基于实例和规则推理的技术应用到动力系统的选型设计中.根据动力系统高压、牵引、制动模块的特点,研究了动力系统产品的结构模型,并设计了详细的选型设计流程,通过实例推理得到相似度高的实例,再根据规则推理得到准确的选型结果.在此基础上,开发了高速列车动力系统选型设计软件,以牵引电机选型设计为例,验证了该方法的有效性和可行性.  相似文献   

16.
为了提高高速离心压缩机驱动电机调速系统的抗扰性能,提出自适应非奇异终端滑模控制的无模型控制方法。设计自适应非奇异终端滑模控制律,引入速度误差变量,采用非奇异终端滑模面,使系统状态变量根据距离平衡点自适应调节,建立无模型超局部模型,设计速度控制器。以额定功率60 kW、额定转速45 000 r·min-1的高速离心压缩机系统为对象,对方案的控制效果进行了验证。仿真结果表明:在电机参数发生摄动、负载产生扰动时,该方法可以有效提高系统抗干扰性,减小电机转速波动。  相似文献   

17.
通过分析动车组的牵引-制动系统,建立动车组的各动力单元的线性模型,考虑到动车组运行过程中空气阻力、未知干扰等非线性因素,将实际输出与线性模型输出的误差描述为未建模动态,将动车组运行过程这一非线性问题描述成为线性模型与非线性未建模动态两部分组成的集成模型,利用BP神经网络在线估计未建模动态项,利用递推辨识算法在线更新模型参数。在控制器设计中将广义预测控制器、未建模动态补偿器相结合,设计了多变量非线性广义预测控制器。基于CRH380A型动车组为对象进行仿真,实现了对给定速度的高精确跟踪控制,以及动车组的准时、舒适、安全的运行要求。  相似文献   

18.
针对高速列车纵向动力学特性,分析了牵引力、制动力、阻力与速度和加速度的关系;考虑了天气和线路对高速列车运行状态造成的随机干扰,以及机械磨损和运行环境对列车模型结构参数造成的随机影响,建立了噪声干扰下的高速列车纵向动力学参数化状态空间模型,利用期望极大化准则,计算了列车模型参数的条件数学期望,并结合粒子滤波理论估计了参数粒子下的列车状态;基于贝叶斯后验概率理论,建立了高速列车非线性动力学模型的时变参数辨识方法,估计了列车的实时状态,并在噪声与参数分布均属于高斯分布、噪声属于高斯分布与参数属于指数分布、噪声属于伽玛分布与参数属于高斯分布的3种工况下,进行了蒙特卡洛仿真试验。仿真结果表明:在3种工况下,高速列车位移和速度的估计值与真实值的相对误差小于5%,列车模型参数估计值与真实值的相对误差小于10%,满足实际系统需求,因此,在高斯或伽玛噪声的干扰下,针对给定概率分布的时变参数,本方法均能实现系统状态的估计和模型参数的辨识。  相似文献   

19.
为掌握高速列车架悬式驱动装置振动特性,基于Adams/Rail建立了高速列车动车仿真模型,根据修改后的德国高速轨道谱生成了仿真模型轨道不平顺空间域波形作为轨道不平顺输入激励,据此进行不同车速下直线、曲线运行时的动力学仿真,仿真结果表明:高速列车架悬式驱动装置振动响应为非平稳随机信号,轨道状况以及车辆行驶速度对其影响很大。同时齿轮箱及牵引电机的振动主要体现在横摆、沉浮、侧滚及点头运动,当通过弯道时,两部件沉浮及侧滚振动位移存在较大均值,同时齿轮箱相对构架存在较大的摇头转角均值,且各向振动幅值基本与直线行驶时的振动幅值基本相同。  相似文献   

20.
基于小波和自适应模糊神经的旋转设备故障诊断   总被引:2,自引:0,他引:2  
针对传统的故障诊断方法和单独使用某一种智能诊断方法的局限性,将小波分析的故障特征提取方法和自适应模糊神经网络结合起来,对旋转设备的故障诊断进行了研究;通过对电机设备进行的故障诊断仿真实验,结果表明,与单独使用神经网路方法相比,该方法可以获得更高的故障诊断精度和诊断速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号