首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
利用SIMPACK动力学软件建立钢轨打磨车的仿真模型,对打磨小车在作业工况下小半径曲线通过时的轮轴横向力、轮重减载率、脱轨系数进行动力学计算,分析其易发生脱轨的原因,并从结构和悬挂参数方面给出改进意见。  相似文献   

2.
以100 m长钢轨采用换长1.5和1.3普通平车装载加固方案为例,建立长钢轨运输动力学仿真模型.对车组以不同速度侧向通过9号和12号道岔,以及通过半径为300 m曲线的工况进行动力学仿真计算.结果表明,车组的各项动力学指标均满足运输安全要求;各工况下动力学指标随着车辆运行速度的提高而增大,但脱轨系数最大值与速度关系不大...  相似文献   

3.
为研究轨道参数对单轴转向架曲线通过性能的影响,运用SIMPACK软件建立了单轴转向架车辆动力学模型,采用轮轨横向力、脱轨系数、轮重减载率等作为评价指标,对曲线半径、超高、轨距等轨道参数进行仿真分析。结果表明:曲线半径、轨距和轨底坡对车辆运行性能的影响较为显著,随着曲线半径的增加,各项指标最大值均减小,增大曲线半径能够提高钢轨的使用寿命;曲线上设置适量欠超高能够改善运行性能,提高车辆安全性;小半径曲线上适当加宽轨距和增大轨底坡可以减小轮轨作用力,提高车辆曲线通过性能,减轻轮轨磨耗,延长钢轨使用寿命。  相似文献   

4.
为了研究车辆系统中轮对的弹性效应对车辆动态曲线通过性能的影响,运用多体系统刚柔耦合动力学理论,通过有限元软件ANSYS将轮对柔性化处理后导入多体动力学软件UM中,建立考虑轮对为柔性的某型高速车辆刚柔耦合动力学模型,研究轮对柔性对高速车辆动态曲线通过的各项安全性能指标及平稳性的影响,对比分析不同工况下轮对刚性与柔性对高速车辆动态曲线通过时的动力学响应。结果表明:刚柔耦合动力学模型的脱轨系数、轮重减载率、轮轴横向力和垂向平稳性指数较多刚体动力学模型均有不同程度的降低,而轮轨接触角、轮对侧滚角位移和横向平稳性指数较多刚体动力学模型有所升高。考虑轮对的弹性效应对车辆动态曲线通过性能有一定的影响,柔性轮对较刚性轮对更能真实地反映车辆系统的动力学性能。  相似文献   

5.
车辆以较低的速度通过小半径曲线时常会发生脱轨事故,为了研究动车组在动车所内小半径曲线脱轨的特性,应用多体动力学软件建立了8辆编组的CRH5型动车组仿真模型,考虑了悬挂参数和车钩缓冲装置的非线性特性。在某动车所半径250m的曲线进行了仿真模型的验证试验,应用MiniProf钢轨廓形仪和轨道几何状态测试手推车分别测试了钢轨磨耗和线路的轨道几何状态,将其作为仿真模型的输入参数;在钢轨轨腰粘贴应变片,利用应变片测试原理进行地面轮轨垂直力和水平力测试,应用现场测试数据对仿真模型进行验证,发现计算结果与试验结果吻合较好。应用该仿真模型分析了曲线连续正矢差、轨道几何状态及轮轨型面对车辆脱轨的影响,结果表明:(1)曲线连续正矢差对脱轨系数和横向力影响较大,对轮重减载率影响较小;(2)新车轮与磨耗钢轨接触时的脱轨系数增大约40%;(3)较大的轨道高低不平顺容易引发车辆爬轨脱轨,应严格控制小半径曲线外股的高低偏差;(4)对于CRH5型动车组,由于5车质量较轻,5车的车轮抬升量较其他车增大约35%,使得通过曲线的脱轨安全裕度减小。  相似文献   

6.
为探究货运线路中曲线区段磨耗钢轨的打磨方法对钢轨的服役寿命及列车运行安全的直接影响,针对曲线区段钢轨打磨廓形设计方法开展研究.设计多段圆弧和半径等多参变量的平滑设计方法,构建钢轨廓形描述模型,结合车辆-轨道耦合动力学及轮轨接触分析,设计不同权重系数,建立缓和曲线及恒定半径曲线段的磨耗钢轨打磨廓形的多目标函数,采用优化算...  相似文献   

7.
地铁运营条件与线路参数对曲线钢轨磨耗的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
运用Simpack数值模拟虚拟样机技术软件,建立地铁车辆轨道耦合动力学模型;针对车辆行驶于不同运营条件下和不同曲线参数线路时对钢轨磨耗的影响,进行仿真模拟计算分析.基于模型和计算工况,在抑制和减缓钢轨磨耗方面,采取比最高运营速度略低的行车速度为宜,一定量的踏面涂油措施有助于减缓钢轨波磨的程度,曲线半径越大越好,超高比平...  相似文献   

8.
王健 《铁道建筑》2022,(1):31-34
为提升车辆通过高速道岔时的运行平稳性,基于迹线法建立车轮与道岔钢轨接触几何计算模型,分析车辆通过道岔转辙器时的轮轨接触点对分布特性,发现轮轨接触位置不集中和突变是降低车辆运行平稳性的主要因素。以降低接触突变幅度为原则提出转辙器钢轨廓形打磨方案,并基于轮轨接触几何模型和车辆-道岔多刚体动力学模型,对道岔钢轨打磨的效果进行研究。结果表明:钢轨廓形打磨能有效降低道岔区轮轨接触不平顺和等效锥度,利于提升车辆的运行平稳性;打磨后轮轨横向力、车体横向加速度、脱轨系数的最大值分别降低了39.5%、7.4%、41.7%,该廓形打磨方案对提升道岔服役性能效果明显。  相似文献   

9.
《机车电传动》2021,(3):37-45
钢轨打磨车通过牵引机构将动力传递至车体底部的打磨装置,使其沿钢轨进行走行作业和打磨作业。现有牵引机构多采用带角度的斜拉式安装,针对这种牵引机构使用过程中存在的问题,提出了一种竖直式牵引机构。以某型钢轨打磨车为例,对使用竖直式牵引机构的打磨车进行牵引力计算和静力学分析,同时对打磨装置进行动力学特性计算。通过分析计算得出,竖直式牵引机构的力学特性能够满足打磨装置的使用需求,使用竖直式牵引机构的打磨装置具有良好的平稳性和曲线通过性能,避免了传统斜拉式牵引机构所存在的问题,具有较好的应用前景。  相似文献   

10.
针对某高速铁路动车组车体抖动问题,采集不同线路工况下车体振动加速度及平稳性数据、不同磨耗车轮踏面及打磨前后钢轨廓形,研究不同线路工况、车轮踏面和钢轨廓形对动车组车体振动特征影响,研究镟轮后不同时期车轮踏面和打磨前后钢轨廓形匹配下轮轨几何接触关系。同时,采用实际线路及动车组车辆参数,基于多体动力学软件Simpack建立包含实测车轮踏面和钢轨廓形的车辆-轨道耦合系统动力学模型,计算车轮镟修和钢轨打磨对车辆关键动力学指标的影响。研究结果表明:该高速铁路动车组车体抖动主要发生在隧道工况内,体现为垂向和横向的综合异常振动;随车轮踏面磨耗增加,实测车体振动加速度逐渐增大,轮轨接触关系逐渐恶化,与未廓形打磨钢轨匹配时尤为明显;钢轨打磨可以有效抑制等效锥度随车轮踏面磨耗增加的不断增大,有效改善轮轨接触关系。车轮镟修和钢轨廓形打磨均可降低等效锥度,有效整治高速铁路动车组车体抖动。  相似文献   

11.
为了解决地铁小半径曲线钢轨非正常磨耗问题、延长曲线段钢轨使用寿命、保障列车运行的安全性和稳定性,通过实测分析小半径曲线钢轨型面数据的磨耗特点及其接触变化,设计出适用于小半径曲线轨道的钢轨打磨型面(Opt-60型面).建立地铁B型车动力学模型和轮轨接触有限元模型,分别对不同打磨型面在整个维护周期内的钢轨性能进行仿真计算.计算结果表明:相对于CN60打磨型面,Opt-60型面的打磨量减小了 44.2%,打磨深度减小了 0.646 mm;在维护周期内Opt-60型面的轮轨横向力和脱轨系数都有明显改善,安全系数有所提升,且横向平稳系数与垂向平稳性系数均得到提高;在一定列车通过量下,Opt-60型面的轮轨接触面积比CN60打磨型面的轮轨接触面积大14.63%~27.13%,接触应力减小19.27%~27.97%.计算结果已明显表明,Opt-60型面能有效减缓钢轨磨耗、抑制钢轨疲劳,还能提高列车运行的安全性和平稳性,优化了列车的动力学性能.  相似文献   

12.
为解决国内部分服役动车组在运营过程中产生车体低频横向晃动问题(以下简称“晃车”),提高车体平稳性和旅客乘坐的舒适性,基于对部分晃车区段(打磨目标为60N钢轨的高速铁路干线)开展跟踪调研与测试的基础上,对比工务系统打磨后左右轨对称情况下,不同偏差值的钢轨廓形对应车体低频横向晃动的差异;并结合动力学仿真软件研究不同偏差值的钢轨廓形对于晃车现象的影响,找出打磨目标为60N钢轨的合理打磨限值并提出相应的打磨措施与建议。结果表明:晃车区段左右股钢轨工作边相较于打磨目标廓形60N钢轨存在过打磨导致等效锥度过小,是造成动车组晃车的重要原因;以车体横向振动加速度、车体横向晃动主频和轮轨匹配等效锥度等值为主要依据,提出60N钢轨在横坐标15 mm处的负偏差为0.1 mm时,会出现晃车现象,建议工务系统以60N钢轨为目标廓形时,按照正偏差打磨,打磨值宜按+0.1 mm控制。  相似文献   

13.
高速铁路曲线线路车线耦合系统动力学性能仿真分析   总被引:1,自引:0,他引:1  
依据系统工程理论,建立高速铁路曲线线路车线耦合系统有限元模型,对曲线线路在高速行车条件下的耦合系统动力学性能进行仿真,研究时速300 km等级高速动车组作用下曲线线路安全与平稳性指标,曲线线路轨道结构各部分的振动响应、列车速度与曲线半径和超高的关系.结果表明动车组以350 km·h-1的速度通过半径为5 500,7 000和9 000 m的曲线线路时,动车组的垂向和横向振动加速度以及平稳性能均满足舒适度要求,而且脱轨系数和轮轴横向力也能满足列车运行安全性要求;钢轨支点的横向力表现为过超高时内轨侧大、外轨侧小,欠超高时外轨侧大、内轨侧小;钢轨、轨枕的垂向和横向加速度随速度增加明显增大,而道床和路基的垂向加速度变化不大;钢轨和轨枕的横向动位移和动态轨距扩大量随速度的增加而增大;相同速度下,曲线半径小的轨道振动相对较大.  相似文献   

14.
针对我国部分地铁线路出现振动噪声加剧及钢轨异常波磨的现实情况,开展地铁钢轨波磨形成机理的研究。利用多体动力学仿真软件Simpack建立包含地铁车辆和轨道结构的车辆系统动力学模型,研究车辆-轨道系统动力学性能以及弹性轨道系统振动特性对波磨形成的影响。研究结果表明:车辆通过曲线半径300m的钢弹簧浮置板轨道时,产生欠超高的速度以及降低曲线超高均可以降低轮轨间作用力;内侧钢轨的轮轨磨耗指数和横向蠕滑力均大于外侧,尤其在速度为55km/h时,无论轮缘是否贴靠钢轨,内侧钢轨所受应力均相对较大,造成内轨磨耗加剧;从曲线内外侧钢轨和轨道板频谱特性可知,内侧钢轨与轨道板发生共振现象所对应的频率140Hz与现场测试得出的通过频率139Hz相接近。轮轨间横向滑动造成的钢轨磨耗和轨道结构的垂向振动可能是造成曲线钢轨波磨的主要原因。  相似文献   

15.
针对钢轨斜裂纹特点提出钢轨非对称打磨技术以减轻和控制斜裂纹的形成与发展速率。利用SIMPACK动力学软件建立"蓝箭"号动车动力学分析模型,研究钢轨非对称打磨对列车运行性能的影响。研究结果表明:钢轨非对称打磨基本不影响车辆动力学性能和蠕滑行为;钢轨非对称打磨改变了轮轨接触几何参数,使轮轨接触点远离原内侧轨肩位置;钢轨非对称打磨通过改变钢轨廓形导致接触斑面积增大,明显降低轮轨最大接触应力;钢轨非对称打磨通过改变轮轨接触点分布和降低接触应力可减缓钢轨斜裂纹的萌生与扩展。  相似文献   

16.
介绍了有限元软件ANSYS与多体动力学软件SIMPACK联合仿真的方法,利用ANSYS分析得到的结构和模态等信息将轮对进行弹性化处理,而仍将车体、构架等部件作为刚体;在SIMPACK软件中建立了完整的刚柔耦合车辆系统动力学模型,比较分析了柔性轮对和刚性轮对车辆动力学的影响。研究表明:在直线运行速度不高时,轮对为柔性对车体动力学性能基本没有影响,在车辆高速运行时,考虑轮对的柔性是非常有必要的;在通过曲线时,柔性轮对模型的曲线通过性能略优于刚性轮对模型,更加符合实际情况。  相似文献   

17.
李晓光 《铁道建筑》2020,(1):125-128,152
60N钢轨18号无砟道岔在京沈客运专线喀左站进行了试铺,通过预打磨试验、联调联试道岔动力学性能测试及开通后服役性能分析,验证其在高速条件下的适应性。结果表明:60N钢轨道岔可实现与区间60N钢轨的匹配,与60 kg/m钢轨18号无砟道岔预打磨相比减少打磨工作量60%以上,打磨质量更容易保证;综合检测列车以不同速度通过60N钢轨18号无砟道岔时,安全性、平稳性、舒适性和道岔结构动力学等指标均满足列车运行要求。与60 kg/m钢轨18号无砟道岔列车动力学性能测试结果对比表明,构架脱轨系数和轮轨横向力峰值有所降低,其他动力学指标基本相当;60N钢轨18号无砟道岔服役性能试验结果表明,钢轨服役性能良好,无明显磨耗及伤损情况产生。  相似文献   

18.
根据地铁曲线地段钢轨打磨前后实测廓形建立了实参数动力学模型并进行仿真计算,结合现场实测数据,对打磨效果进行了量化分析。研究表明,钢轨打磨后车体横向和垂向振动加速度有效值相对打磨前分别降低了7%、2%,从而提高了曲线地段地铁车辆运行的平稳性;钢轨廓形打磨可以使脱轨系数降低5%~30%,横向蠕滑力减小5%~40%,磨耗指数降低10%~50%,从而提高了车辆运行的安全性,降低了钢轨表面病害发生率和磨耗速率。通过打磨后现场观测发现,打磨区段钢轨垂磨速率相对非打磨区段降低了30%~40%,表明钢轨廓形打磨可以有效降低钢轨磨耗速率。  相似文献   

19.
随着机车轴重的不断增加,轮轨磨耗加剧,重载铁路小半径曲线上的钢轨波磨越发普遍。文章基于车辆系统动力学理论,建立C_0-C_0型30 t轴重重载机车模型,利用MATLAB软件模拟小半径曲线上的钢轨波磨作为外部激扰输入,研究了小半径曲线钢轨波磨对机车曲线通过安全性的影响。结果表明,轮轨垂向力随着波磨波深的增大而增大,随着波长的增大而减小,当机车以不低于70 km/h的速度通过小半径曲线钢轨波磨区间时,极有可能出现轮轨瞬时脱离现象。为了保障机车曲线安全通过,以动态轮重减载率、脱轨系数和倾覆系数为评价指标,针对小半径曲线上不同波深和波长的钢轨波磨,给出了行车速度建议:对于波长为300 mm、波深为0.8 mm的钢轨波磨区间,机车安全通过速度不能超过70 km/h;当波磨进一步发展,波深达到1.0 mm时,机车安全通过速度不能超过60 km/h。  相似文献   

20.
针对地铁线路普遍存在的钢轨磨耗现象,从轮轨蠕滑力和磨耗功率的角度研究地铁小半径曲线钢轨波磨问题,并利用多体动力学软件SIMPACK建立车辆-轨道动力学耦合模型对地铁曲线地段上车辆运行速度和曲线半径对轮轨磨耗的影响进行动力仿真计算和分析。分析计算结果表明:车辆运营速度不宜过低,为降低轮轨磨耗、保证行车安全及运力需求,最高运营速度定为60~70 km/h为宜;曲线半径对钢轨磨耗功率影响较大,在符合城市规划等决定因素的要求下地铁线路曲线半径尽量大于500 m,可以实现良好的运行效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号