首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
肖容 《城市道桥与防洪》2021,(6):238-241,269
为研究横向构件布置与截面设计对3主桁受力均衡性的影响,以宁波市三官堂大桥主桥160m+465m+160 m=785 m的大跨径钢桁架连续梁桥为例,采用Midas/Civil软件建立钢桁架梁模型,分析比较对称荷载与偏载作用下主桁结构支反力、轴力和位移等静力效应,得出了3主桁连续钢桁梁桥的内力分布特性.  相似文献   

2.
新白沙沱长江大桥主桥为(81+162+432+162+81)m的五跨连续钢桁梁斜拉桥,上层布置四线客运专线,下层布置两线货运专线,是国内首座六线铁路桥。为合理选择该桥钢桁梁的横断面,从结构的空间构成、受力及经济合理性等方面,对2片主桁与3片主桁、梯形斜桁断面方案与矩形直桁断面方案进行对比分析。结果表明:大桥采用2片主桁的矩形直桁断面方案既能满足线路的布置要求,又具有结构受力合理、钢结构制造安装方便和较好的经济性等优势。因此大桥钢桁梁最终采用2片主桁的矩形直桁断面,桁宽24.5m,桁高15.2m,上层桥面为正交异性板整体结构,下层桥面为纵横梁+道砟槽板结构。  相似文献   

3.
南京大胜关长江大桥主桥为主跨336 m的钢桁拱桥,钢桁拱采用三主桁结构.为减小该桥钢桁拱三主桁间内力分配的差异,以跨径168 m的简支三主桁钢桁梁为例,研究影响三主桁结构内力分配的因素.采用结构分析软件MIDAS Civil对该钢桁梁建立模型,分析比较在对称荷载与偏载作用下结构的静力效应.分析结果表明:在对称荷载与偏载作用下,横联均是影响主桁受力分配的主要因素;在对称荷载作用下,横梁刚度比平联面积对三主桁内力分配影响明显;在偏载作用下,平联面积比横梁刚度对三主桁内力分配影响明显.  相似文献   

4.
柳州市维义大桥主桥设计与施工   总被引:1,自引:0,他引:1  
柳州市维义大桥主桥采用(108+288+108)m中承式连续钢桁拱桥结构,为双向8车道城市桥梁,综述该桥的设计与施工情况。主桁由2片钢桁架组成,采用变高度N形桁式,2片桁中心距37 m,在2片主桁架的外侧各挑出3.25 m的悬臂托架支承人行道,桥面总宽度43.5 m。在主拱圈上、下弦杆平面及边跨桁架上弦杆均设置了菱形平联。桥面系采用正交异性钢桥面板结构,桥面铺装采用厚5.5 cm的环氧沥青混凝土。吊杆采用柔性钢绞线整体挤压拉索。主梁边、主跨均采用临时墩辅助的伸臂法架设,拱、梁同步安装,在跨中合龙。  相似文献   

5.
袁毅  彭最 《桥梁建设》2023,(1):9-15
武汉汉江湾桥主桥为(132+408+132) m中承式连续钢桁拱桥,桥面车行道按双向6车道布置,并预留拓宽至8车道条件。主桥拱肋采用变高度N形桁式两主桁钢桁架结构。主桁标准间距34 m,汉口岸边跨受限于总体线形,主桁间距由34 m变化至39.5 m。主桁中支点附近下弦杆根据受力要求采用Q690qE高性能桥梁钢。车行道桥面采用正交异性钢桥面板,车行道桥面下U形纵肋与钢桥面采用全熔透焊接设计。通过主桁节点弯折、钢桥面横坡变化等构造措施简化了主桁、联结系、桥面系的空间关系,降低了杆件制造难度,实现了桥面结构的曲线变宽。  相似文献   

6.
东莞东江大桥钢桁梁合龙技术   总被引:1,自引:1,他引:0  
东莞东江大桥主桥为双层刚性悬索三桁加劲连续钢桁梁公路桥,跨径布置为(112+208+112)m,三桁整体受力。大桥分2次合龙(平弦合龙和加劲弦合龙),为解决合龙位置杆件偏差问题,结合该桥的工程特点,提出利用墩顶临时支承起顶装置、温差法及主墩墩顶临时纵向顶推装置的解决措施。采用结构分析软件,建立全桥有限元计算分析模型,通过对合龙工况的分析,确定了起顶位置及起顶高度,分别实现大桥平弦及加劲弦合龙。实践证明,大桥顺利合龙且各项指标均满足设计要求。  相似文献   

7.
柳州市白露大桥为主跨288 m 的连续钢桁拱桥,采用两片主桁,主桁中心距为37 m.针对边跨桁梁桁高矮、横向宽度大的特点,将腹杆设计为变截面,通过减小其线刚度并增大截面面积的方法以消除横向框架效应产生的不利影响.平联采用较为简洁的菱形桁式,兼顾结构的受力合理性和美观性.桥面采用密横梁体系的正交异性整体桥面板,使桥面板参与主桁共同作用的同时避免了横梁面外弯曲.为改善结构气动性能,降低风致振动的影响,采用柔性吊杆.边跨平弦钢桁梁采用支架法半悬臂施工,中跨拱圈采用以临时墩辅助拱上吊机悬臂架设的施工方案,桥面系随主桁同步架设.  相似文献   

8.
合福铁路铜陵长江大桥主桥为双塔多跨连续钢桁梁三索面斜拉桥,钢桁梁的桁片采用国内首次应用的大型整体焊接式的结构设计,长30m、高15.5m,单重约360t。通过对整体桁片拼装的工艺要点和施工难点研究分析;设计专门的组装定位胎架,合理确定上、下弦杆与竖、斜杆接口组装、定位、测量、焊接的顺序,控制焊接收缩和变形;采取控制环境温度、锤击法、减少扩散氢含量等工艺措施,提高焊缝质量;利用平面试拼装确保桁片间纵向连接精度。实践证明:大型整片桁片的关键拼装技术提高了工厂化的桥梁制造精度,缩短了桥梁的安装架设周期。  相似文献   

9.
南沙港铁路洪奇沥特大桥位于近海强风区,通过方案比选最终选择跨径为(138+360+360+138)m钢桁梁柔性拱桥作为桥式方案。钢桁梁采用高16m的2片主桁,桁间距15m,节间长度为13.5m和14m;采用水平向熔断型支座、纵向粘滞阻尼器、横向E型钢阻尼器的组合抗震措施;设计选用柔性吊杆;采用板式轨枕纵横梁无道砟桥面系,与传统的正交异性板有砟桥面系相比,桥面恒载由145kN/m降至70kN/m,节省了费用。为减小施工风险,在主跨设置临时支墩,并借助临时支墩悬臂拼装钢桁梁;将拱肋分成2个半拱,在钢桁梁上弦搭设支架卧拼拱肋,并借助扣塔扣索竖转拱肋。有限元计算结果表明该桥设计方案结构力学性能满足规范要求,设计合理。  相似文献   

10.
忠建河特大桥主桥为主跨400m的双塔双索面钢桁梁斜拉桥,主桥钢桁梁为N形桁式,横向采用2片主桁结构,钢桁梁采用桥面吊机悬臂对称拼装施工。为确保忠建河特大桥主桥高精度合龙,使桥梁达到设计成桥状态,采用MIDAS Civil软件建立全桥空间有限元模型,利用无应力状态控制法对该桥桥塔、钢桁梁和斜拉索等进行施工监控。结果表明:该桥桥塔偏位误差均小于±20mm,成桥索力与设计索力误差均小于5%,合龙口高差仅为5mm,全桥线形误差均控制在±50mm范围内,实现了高精度合龙,成桥时结构线形平顺,受力符合设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号