首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
普通钢筋混凝土管片厚大笨重,生产、运输、施工中易损易裂、边缘极易破损,而使用钢纤维混凝土管片是有效防治此缺陷的工程手段之一.试验通过改变三种不同钢纤维类型混凝土的钢纤维体积掺量制成试块,研究不同掺量下不同类型钢纤维混凝土的拌和性能、形态,以及力学性能,结果表明:与基体混凝土相比较,钢纤维混凝土的抗变形能力和整体韧性明显提高,强度均优于基体混凝土,哑铃型和波浪型钢纤维混凝土的拌和性能较好,体积掺量1.8%的哑铃型钢纤维具有较好的力学性能指标.综合考虑管片的成型难易、生产成本、外观质量和力学性能,地铁盾构钢纤维混凝土管片的实际生产建议采用哑铃型钢纤维,体积掺量以1.8%为宜.  相似文献   

2.
为了分析纤维对沥青混合料的增强作用,选取2种代表纤维(聚酯纤维和玄武岩纤维)及3种常用表面层细粒式级配(AC-13C,SMA-13和OGFC-13),进行了大量沥青混合料配合比设计和室内性能试验.试验结果表明:玄武岩纤维比聚酯纤维具有更强的桥接、加筋和吸附作用;纤维的掺入可有效改善沥青混合料的各项物理和力学性能及路用性能,且对密实级配沥青混合料的增强效果优于开级配沥青混合料的,而玄武岩纤维的增强作用总体优于聚酯纤维的;由此确定细粒式纤维沥青混合料的适宜纤维掺量为:聚酯纤维0.2%~0.3%,玄武岩纤维0.3%~0.4%,可供工程应用参考.  相似文献   

3.
为了进一步研究玄武岩纤维对水泥稳定碎石混合料强度的提升效率,从玄武岩掺量、养生龄期、水泥用量方面研究其对水稳碎石强度的影响。结果表明:在水泥稳定碎石中,玄武岩纤维质量掺量为0. 559‰时,7d无侧限抗压强度最高,7d无侧限抗压强度相对未添加纤维时强度提升38. 5%,28d无侧限抗压强度相对未添加纤维时强度提升6. 25%;玄武岩纤维水泥稳定碎石中,水泥掺量为4%时,随着水泥稳定碎石养护龄期的延长,添加纤维的水泥稳定碎石混合料强度增长速率高于不添加纤维的水泥稳定碎石混合料;水泥剂量超过5%时,强度上升变缓。  相似文献   

4.
为研究多壁碳纳米管对火山灰基地聚合物的增强效果与机理,通过显微观察和图像识别对比了不同超声时间多壁碳纳米管分散液中团聚体的数量和面积,确定了适宜的超声分散时长;以不同顺序混合分散液、碱激发剂溶液和火山灰制备地聚合物,通过所得浆体的稠度试验、硬化试件的三点弯曲试验、单轴压缩试验研究了不同掺量、不同种类的多壁碳纳米管对地聚合物工作性能与力学性能的影响,并利用扫描电子显微镜-能谱仪、压汞试验对地聚合产物的微观形貌和孔隙结构进行表征。分析结果表明:随着超声时间的增加,多壁碳纳米管的分散效果改善明显,45 min超声后超过85%的团聚体面积减小至0~100μm2,总团聚体面积占比小于1%,且平均面积小于50μm2;先添加多壁碳纳米管分散液再添加碱激发剂溶液的材料混合顺序更有利于纤维的均匀分散和地聚合物工作性能的保持;多壁碳纳米管在0.10%质量掺量时,对火山灰基地聚合物流动度影响不大,且能够有效提升其力学性能;功能化的多壁碳纳米管由于具有更强的亲水性和润湿性,对浆体工作性能的影响更轻微,对硬化试件力学性能的提升更显著,28 d时抗折、抗压强度较参照组最...  相似文献   

5.
针对不同的玄武岩纤维掺量,以压折比、抗弯拉韧性为评价指标,研究玄武岩纤维对水稳建筑垃圾柔化抗裂性能的影响。试验结果表明,掺加玄武岩纤维后,水稳建筑垃圾的柔化抗裂性能得到了大幅度增强,纤维掺量为0. 06%时,水稳建筑垃圾的压折比比不掺加纤维的水稳建筑垃圾减小了19. 7%、等效弯拉强度增大了47.2%。随着玄武岩纤维掺量的增大,水稳建筑垃圾的抗裂性能的改善增幅逐渐减小,纤维掺量为0. 06%时,玄武岩纤维对水稳建筑垃圾的综合路用性能改善作用最佳。  相似文献   

6.
对形变Cu-10%Cr-3%Ag原位复合材料形貌、强度和导电性进行了研究.用扫描电镜观察发现,Cr相在形变过程中由铸态的树枝晶变形成为纤维,横截面呈弯曲状薄片,形变量越大,纤维越均匀细密.力学性能和电阻率测试结果发现,随形变量增加,强度提高,电阻率增大.中间热处理对强度和导电性均有影响,在形变量一致的情况下,中间热处理温度太高太低都会使得强度和导电性性能降低.随中间热处理温度的升高,电阻率先减小后增加,强度较小地先增加后减小,只经过一次中间热处理的材料在500℃时,性能组合最佳.几个较好的电导率和极限抗拉强度组合为82.8%IACS/791 MPa (Φ1mm、B工艺)、80.6%IACS/809 MPa (Φ1 mm、A工艺)和80.2%IACS/731 MPa(Φ1.29 mm、A工艺),78.4%IACS/950 MPa(Φ1 mm、C工艺).  相似文献   

7.
为了评价橡胶粉对高掺量再生沥青混合料性能的影响,控制RAP含量在0%~60%(0%、20%、40%和60%)之间变化,湿法掺入橡胶粉(按沥青重量的0%、10%和20%)。通过室内间接拉伸强度、水敏感性、疲劳试验等研究了再生改性沥青混合料的抗裂性能、抗车辙和疲劳行为。试验结果表明,随着RAP含量的增加,混合料的疲劳寿命降低,在再生沥青混合料中添加橡胶粉可提高其疲劳寿命和抗车辙性能;橡胶粉用量为10%、RAP料用量为40%时,沥青混合料性能无明显降低。  相似文献   

8.
为解决废弃纤维增强复合塑料(fiber reinforced plastics,FRP)难以处理的问题,利用废弃FRP破碎料作为增强相制备水泥基复合材料。通过超声分散废弃FRP破碎料,与水泥基材料混合后制备废弃FRP-水泥基复合材料,并进行性能测试与微观结构分析。试验结果表明:加入废弃FRP破碎料导致水泥基体的流动性下降;复合材料的抗压和抗折强度随FRP破碎料添加量的增加呈先增大后减小的变化趋势,FRP破碎料与水泥的质量比为10%时复合材料的力学性能最佳,其28 d抗压强度和抗折强度相比于水泥基体提高了36. 1%和45. 3%;废弃FRP破碎料中玻璃纤维与环氧树脂粉末对复合材料的强韧化均有贡献,表面具有类珠链结构的玻璃纤维表现出更好的强韧化效果。  相似文献   

9.
高强度CPP纤维的力学及降解性能研究   总被引:6,自引:0,他引:6  
研制出CPP纤维并测试了该纤维的力学性能和模拟体液中的降解性能,探讨了纤维的降解机理.  相似文献   

10.
聚丙烯腈纤维SMA路用性能   总被引:11,自引:1,他引:11  
通过沥青混合料性能试验,研究了聚丙烯腈纤维和木质素纤维对沥青玛蹄脂碎石混合料(SMA)的高、低温及强度性能的影响,发现掺加聚丙烯腈纤维的SMA的动稳定度比掺加木质素纤维有显著提高,且总变形量明显减少;低温弯曲的破坏应变也有所增大;抗压强度提高30%;0.2%和0.3%聚丙烯腈纤维掺量对SMA各项性能指标影响不大。结果表明,聚丙烯腈是一种性能良好的沥青混合料添加材料,具有较好的工程应用前景。  相似文献   

11.
以钢纤维和聚丙烯纤维作为增强材料,首先在实验室探讨了单掺和混掺上述两种纤维对混凝土物理力学性能以及收缩性能的影响,并结合现场进行喷射试验。室内试验结果表明,混凝土中混掺钢纤维和聚丙烯纤维可以改善混凝土拌和物的和易性,混凝土力学性能的改善效果也优于单掺上述两种纤维的混凝土,且当聚丙烯纤维的掺量为1.0 kg/m~3、钢纤维掺量为40 kg/m~3时,混凝土的力学性能最优,混掺两种纤维后,可使混凝土的早期收缩和后期收缩大幅度降低,可明显提高混凝土的抗裂性能。  相似文献   

12.
为了解决低温地区实体工程中RAP高掺量下路用性能和现场压实温度的问题,针对RAP不同掺量(0%、30%和50%)下温拌再生沥青混合料,通过车辙试验、弯曲试验和冻融劈裂试验及试验掺量的对比,研究聚酯纤维对温拌再生沥青混合料路用性能的影响;通过Superpave试验方法和变温压实试验,以4.0%空隙率为控制指标,研究聚酯纤维对两种RAP掺量(0%、30%)下温拌沥青混合料最佳压实温度的影响。研究结果表明:与不添加纤维相比,聚酯纤维的添加显著改善温拌再生沥青混合料高温稳定性、低温抗裂性和水稳定性,且均满足规范要求;在RAP掺量为0%和30%时,聚酯纤维使温拌沥青混合料最佳压实温度分别提高了9℃和10℃,即聚酯纤维对温拌沥青混合料最佳压实温度影响显著。  相似文献   

13.
黄小芬 《北方交通》2020,(10):70-72,76
针对不同的建筑垃圾掺量,通过干缩抗裂性能试验、温缩抗裂性能试验,研究掺加聚丙烯纤维对水泥稳定建筑垃圾收缩抗裂性能的影响。试验结果表明:随着建筑垃圾掺量的增大,水泥稳定建筑垃圾的收缩抗裂性能逐渐降低,掺加聚丙烯纤维后,水泥稳定建筑垃圾的收缩抗裂性能均有不同程度的提高,建筑垃圾掺量为100%时,掺纤维水泥稳定建筑垃圾的28d干缩系数、7d平均温缩系数分别比不掺加纤维的水泥稳定建筑垃圾降低了19. 4%、7. 3%。  相似文献   

14.
为了解决全无缝桥梁路桥连接板裂缝宽度与板内力过大等问题,将橡胶粉等体积部分替代细砂掺入应变硬化水泥基复合(SHCC)材料可制备低弹性模量的SHCC材料(LEM-SHCC),用于全无缝桥梁路桥连接板;进行了5种不同体积橡胶粉掺量(0、5%、10%、15%和20%)LEM-SHCC基本材性(密度、抗压强度和弹性模量)及拉伸性能试验,分析了橡胶粉掺量对LEM-SHCC的强度和变形性能的影响,并采用拉、压应变比差评价了橡胶粉掺量对SHCC材料的影响,获得了LEM-SHCC的最优配合比;针对橡胶粉掺量为15%的LEM-SHCC路桥连接板,研究了最不利荷载作用下(温降荷载)其吸纳变形能力、拉伸变形性能及开裂后裂缝分布规律,并与同尺寸SHCC路桥连接板的各项性能进行了比对;进行了LEM-SHCC路桥连接板的敏感参数(橡胶粉掺量、板底摩擦因数和板长等主要影响因素)有限元对比分析。研究结果表明:橡胶粉的掺入降低了SHCC的弹性模量,提升了SHCC的延性,当橡胶粉掺量达15%时,SHCC的弹性模量降低了40%,而延性却提升了近50%,且裂缝宽度有效地控制在60 μm以内;LEM-SHCC路桥连接板吸纳纵向变形达到10 mm时,LEM-SHCC路桥连接板表面微裂缝多(近180条),裂缝间距小(15~80 mm),且开裂后裂缝宽度控制在60 μm以内,此时张拉端板应力为2.1 MPa,锚固端锚固力为150.5 kN,卸载后裂缝闭合,无纤维被拉出或拉断;吸纳同样的纵向变形10 mm时,LEM-SHCC板的内力比同尺寸的SHCC板小;LEM-SHCC板的内力受橡胶粉掺量的影响较大,当其掺量为15%时,LEM-SHCC板性能最优,LEM-SHCC板的内力受板底摩擦因数的影响不大,板长的增加能有效地改善LEM-SHCC板的受力性能,推荐LEM-SHCC路桥连接板的设计长度为8.5 m。   相似文献   

15.
杨大田  王鹏 《湖南交通科技》2009,35(3):24-27,112
灰关联分析是一种系统分析技术,分析系统中各因素关联程度的方法.以间接拉伸强度和抗拉韧性为参考指标运用灰关联法定性地分析了通过率、最佳油石比、沥青针入度、沥青软化点、空隙率、纤维种类和纤维掺量等因素对纤维沥青混凝土低温抗裂性能的影响程度,并分清影响因素的主次.分析表明级配和油石比是影响纤维沥青混凝土低温抗裂性能的最主要因素,在此基础上得到了钢纤维及其最佳掺量是适合低温地区沥青混凝土面层防裂.选用密级配和适当增加油石比的钢纤维沥青混合料可减轻沥青路面裂缝.  相似文献   

16.
通过劈裂试验及间接拉伸试验分析质量分数为0、10%、20%、30%、40%和50%的再生沥青掺量对混合料的强度及疲劳性能的影响,同时采用不同应力比对再生沥青混合料进行间接拉伸试验研究混合料的疲劳特性。结果表明,随再生沥青质量分数增加,混合料的劈裂强度增大,且再生沥青质量分数40%时,是其劈裂强度的转折点,超过40%以后,混合料的劈裂强度降低,后期抵抗变形能力降低,即抗疲劳性能较差;随再生沥青质量分数增加,混合料的间随接拉伸强度逐渐增加,但是间接拉伸强度指数逐渐减小;经长期老化后,再生沥青混合料的间接拉伸强度较高,且受荷载破坏时对应的径向应变较小,试件的强度指数要比老化前的低。  相似文献   

17.
通过自制模具实现了对钢纤维从水泥石基体中拔出的实验测试,得到基体混凝土中钢纤维体积掺量为0~1.2%、硅灰取代水泥质量掺量为0~12%时钢纤维拉拔荷载-位移曲线图,通过显微硬度和SEM试验,测试得到了钢纤维-水泥石界面纤维硬度及界面区微观形貌特征。在测试基础上,提出了界面黏结拉拔韧性概念,并计算得到了界面黏结强度和拉拔韧性,分析了硅灰对界面黏结强度、拉拔韧性、界面显微硬度和微观形貌特征的影响规律。研究结果表明,硅灰改善了钢纤维-水泥石界面黏结性能,使界面黏结强度提高了10.7%~44.2%;界面区显微硬度提高了7.4%~38.8%,界面最薄弱层与钢纤维表面的距离由普通混凝土的60μm缩小到40μm,且硅灰掺量越大,效果越好;硅灰使钢纤维拉拔时峰值荷载对应的位移下降了4.1%~25.9%;对于不同掺量的钢纤维混凝土,钢纤维拔出韧性的最佳硅灰掺量为6%~9%。  相似文献   

18.
为减少或消除混凝土早期塑性收缩开裂,在常用的控制混凝土裂缝方法的基础上,探讨了添加PVA纤维控制混凝土裂纹的可行性。采用平板法塑性收缩试验和劈裂抗拉试验,对比研究了直径为14μm的,不同掺量的高模量PVA纤维混凝土抗收缩性能。研究结果表明:当PVA纤维体积掺量为0.6%时,可消除早期塑性收缩裂纹,提高混凝土的抗拉强度。  相似文献   

19.
高强度纤维束的动态拉伸性能   总被引:1,自引:0,他引:1  
用动态拉伸装置及薄臂杆组合夹头测试了5种高强度纤维(PBO,UHMWPE,Kevlar,Glass fiber S-2,Basalt)束的动态力学性能.动态拉伸和静态拉伸结果的对比表明,5种纤维束具有应变率效应.5种纤维束的动态抗拉强度均高于静态抗拉强度,除UHMWPE外动态断裂应变均大于静态断裂应变.应变率效应对5种纤维束动态拉伸失效应变的影响无统一的规律.  相似文献   

20.
杜拉纤维混凝土的试验研究及应用   总被引:2,自引:0,他引:2  
混凝土收缩是引起混凝土开裂的主要原因,用杜拉纤维对混凝土改性来提高混凝土收缩变形能力是混凝土降脆增韧的有效途径.对掺加杜拉纤维混凝土的抗裂、抗渗、抗冲击等力学性能和耐久性能进行了对比试验研究,效果显著.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号