首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张家界大峡谷玻璃桥为人行景观桥,该桥采用主缆跨度为430m的空间索面玻璃桥面悬索桥。该桥横桥向布置2根主缆,单根主缆由19根索股组成,每根索股由91丝直径为5.1mm的镀锌高强钢丝组成,采用平行钢丝预制束股法制作。该桥鞍座采用间接传力结构型式,鞍体为全铸结构,架梁过程中需沿顺桥向从边跨向主跨顶推鞍座以协调桥塔两侧的主缆缆力,从而保证桥塔的受力安全。该桥长吊索索体采用高强平行钢丝,短吊索索体采用钢拉杆,吊索安装时利用缆索吊运至相应的安装位置后与索夹连接。索夹分为有吊索索夹和无吊索索夹2种类型,均为销接式,采用上、下对合型结构形式,用高强螺杆连接紧固,两半索夹利用缆索吊运至相应的安装位置后与主缆连接。  相似文献   

2.
多股成品索式锚碇锚固系统是当前锚固大型悬索桥主缆索股的主要型式。随着悬索桥跨经的不断增大,为减少主缆重量,主缆钢丝向超高强度、更大直径方向发展,目前常用主缆钢丝强度达到了1 960 MPa,而强度超过2 000 MPa、直径超过6 mm的钢丝主缆已在工程中得到应用。随着高强度、大直径主缆索股的不断升级,需开发与之匹配的锚碇锚固系统。通过对2 000 MPa级钢绞线多股成品索式锚碇锚固系统的设计、试验与工程应用,结果表明该新型锚固系统具有降低工程建设成本、锚固可靠、耐久性好、结构紧凑等的优点,已成为当今锚碇工程设计的首选。  相似文献   

3.
虎门二桥坭洲水道桥为(658+1 688)m双塔双跨悬索桥,主缆采用公称直径5mm、公称抗拉强度1 960MPa锌铝合金镀层钢丝,钢丝采用国产高强钢丝盘条(青钢、宝钢)制作。为得到该桥钢丝的灌锚工艺参数,确保钢丝锚固性能,对2种钢丝进行锚固试验,分析不同浓度的清洗助镀液、不同灌锚温度和不同锚固长度对钢丝锚固性能的影响。结果表明:合理的ZnCl2·NH4Cl清洗助镀液浓度对钢丝与锌铜合金的粘结强度的增加有一定的作用,最佳浓度为100g/L;清洗助镀液浓度为100g/L时,灌锚温度对于钢丝强度有一定的影响,灌锚温度460±10℃是比较合适的温度;青钢、宝钢国产盘条加工的钢丝最小锚固长度分别为80mm、100mm;拟选锚杯锚固段尺寸(过渡段145mm,锚固段290mm)完全能够满足锚固需要;索股的破断荷载满足设计及相关验收规范的要求。  相似文献   

4.
主缆无应力长度是悬索桥施工控制的重要参数之一,采用通用有限元软件Midas/Civil对中渡长江大桥主缆无应力长度进行分析,并对计算结果进行修正,得到了中渡长江大桥主缆各索股无应力长度表。同时,研究了主缆弹性模量、主缆钢丝平均直径、加劲梁自重等因素对主缆无应力长度的影响。结果表明:主缆无应力长度与主缆弹性模量、主缆钢丝平均直径呈正比关系,与加劲梁自重呈反比关系,并通过线性拟合得到相关比例系数,可为同类型桥梁主缆无应力长度施工控制提供借鉴。  相似文献   

5.
悬索桥主缆钢丝的腐蚀严重影响着主缆的安全服役,缆内钢丝的腐蚀与其所处的缆内微环境有密切的关系,为预测悬索桥主缆内各区域中钢丝的腐蚀发展和剩余承载力,需建立主缆钢丝区域化腐蚀环境与腐蚀速率之间的计算关系。采用正交试验原理将影响钢丝腐蚀的:温度、相对湿度、Na Cl浓度、p H值、钢丝拉力5个主要因素分为两组,分别采用极化电阻腐蚀传感器和电化学工作站三电极体系两种测量手段对正交工况下的钢丝腐蚀速率进行测量。试验分析数据表明:在试验因素的取值范围内相对湿度和p H值各为两组因素中的主要因素,Na Cl浓度和p H值两个因素之间存在交互效应,温度、相对湿度、钢丝拉力之间相互独立;通过最小二乘法分别拟合得到5个因素与钢丝腐蚀速率之间的拟合计算关系;将实测的主缆内各区域的腐蚀环境统计为腐蚀环境年谱,并代入腐蚀速率与环境因素的计算关系,得到主缆各区域内钢丝的腐蚀速率和直径损失,其中主缆顶部区域腐蚀速率最高为0. 010 8 mm/a,服役20年后直径损失约为0. 02 mm即镀锌层耗损完毕,与实际桥梁检测情况吻合,服役100年直径损失将达到约1. 1 mm,将不能满足主缆的设计要求。建立的腐蚀速率计算方法为计算钢丝腐蚀量提供参考。  相似文献   

6.
桥梁资讯     
《世界桥梁》2013,(1):91-97
韩国李舜臣桥李舜臣桥(Yi Sun-sin Bridge)以韩国著名将军李舜臣的名字命名,全长2 260m,主跨1 545m,双向4车道,是目前世界第4大跨径的悬索桥(见图1)。该桥主缆的垂跨比为1/9,桥塔为梯形截面H形桥塔,高270m。边跨主缆由34股钢绞线组成,主跨主缆由32股钢绞线组成。每股钢绞线由400根5.35mm、抗拉强度1 860MPa的高强钢丝组  相似文献   

7.
武汉杨泗港长江大桥主桥为主跨1 700m的单跨双层钢桁梁悬索桥。该桥2个桥塔均采用沉井基础,沉井下部为钢壳混凝土结构,上部为钢筋混凝土结构;锚碇采用外径98m、壁厚1.5m的圆形地下连续墙基础;桥塔为钢筋混凝土门式结构,1号和2号塔高分别为231.9m和243.9m,采用C60高性能混凝土浇筑;主缆采用直径6.2mm、标准抗拉强度1 960MPa的锌铝合金镀层高强钢丝;加劲梁采用华伦式桁架全焊接结构。在该桥施工中,沉井隔舱区域硬塑黏土层采用搅吸机+高压射水取土的工艺施工,刃脚盲区采用爆破+斜向弯头吸泥机取土的工艺施工;地下连续墙采用液压成槽机和双轮铣槽机进行槽段成槽施工,内衬及填芯混凝土采用逆作法施工;桥塔采用液压爬模施工,通过优化混凝土配合比、选择高压输送泵将C60混凝土一泵到顶;主缆钢丝为国产新材料,按4个阶段组织生产;主缆采用索股混编,PPWS法架设,利用双线往复式牵引系统进行索股牵引;加劲梁采用整体节段制造、吊装技术施工,钢梁节段采用缆载吊机从跨中向桥塔方向逐段吊装。  相似文献   

8.
针对采用分段悬链线法计算悬索桥主缆成桥状态的缺陷,以武汉杨泗港长江大桥主桥(主跨1 700m的钢桁梁双层悬索桥)为背景,提出一种新的悬索桥主缆成桥状态计算方法。该方法基于传统分段悬链线理论对索段进行受力分析,推导出全桥索段的统一悬链线方程,以主缆斜率最小点作为计算起始点,根据主缆线形与斜率的关系和变形相容条件建立方程,利用主缆张力的水平分力与垂度的变化规律求解方程。该方法能保证对平面悬索桥的缆索结构求解收敛。根据该方法编写程序对杨泗港长江大桥主桥主跨主缆的成桥状态进行分析,并与分段悬链线法的计算结果进行对比,结果表明该方法正确可行。该方法的计算结果已成功应用于杨泗港长江大桥主桥的设计中。  相似文献   

9.
一、概述就桥梁工程而言,线材是必不可少的。从使用普通钢筋、钢丝绳,发展到现在使用PC钢材,即高强粗钢筋、高强钢丝、钢绞线,并大量广泛应用。我国目前的桥梁工程中,吊桥的主缆索、斜拉桥的拉索、预应力主梁中广泛使用的24φ5高强钢丝索,都大量使用φ5的高强钢丝;也开始在桥梁工程中使用高强粗钢筋和钢绞线索;吊装工程中多使用钢丝绳索。我国的桥用线材尽管已有了很快的发展,但与发达国家相比还有较大差距,表现在数量、品种规格、材质及配套使用等方面。笔者力图在这里通过纵观日本桥用线材的现状和发展,了解和学习先进技术,以促进我国桥用线材及桥梁工程建设的向前发展。  相似文献   

10.
桥梁缆索用高强度镀锌钢丝   总被引:3,自引:0,他引:3  
为了获得桥梁缆索用镀锌钢丝所需要的强度,防止在扭转试验中出现裂纹以及控制热浸镀锌过程中钢丝强度的损失尤其重要。对防止钢丝开裂而言,提高索氏体化盘条强度比增加拔丝过程的总变形量更为有效。硅和铬两种元素可提高索氏体化盘条强度,减少镀锌过程中渗碳体的球状化而引起的强度损失。基于这些发现,高强度镀锌钢丝得以成功研制,其力学性能不低于常用的钢丝。对于这种新研制的高强钢丝,还研究了它的疲劳性能以及允许应力条件下的延迟开裂性能。  相似文献   

11.
日本几座悬索桥的主缆被发现受到了锈蚀.为确定其锈蚀机理,对主缆内的环境进行了调查,并进行了镀锌钢丝锈蚀模拟试验.研究表明,锈蚀环境与钢丝在主缆内的位置有关,主缆侧面的钢丝最易发生锈蚀.一种采用S形缠绕钢丝和改进涂料的新型方法解决了这一问题,对采用这一方法与常规方法保护的主缆作了长期的露天测试,表明这种方法提高了主缆的防锈性能.另一种新方法是在主缆中输入干燥空气,初步试验表明,这对于提高主缆的防锈性能前景乐观.  相似文献   

12.
悬索桥主缆空中纺线法,简称AS法,是通过循环牵引系统往复拽拉高强钢丝,在猫道上现场制作平行钢丝索股的主缆施工方法。为解决悬索桥主缆AS法架设的难题,基于国内外技术调研,详细介绍了AS工法架设主缆的施工原理及施工工艺,并深入研究了施工设备和施工工艺,建立了悬索桥AS法架设的施工工法。将该工法成功用于贵黄高速阳宝山特大桥的主缆架设工程中,为国内悬索桥主缆设计、架设提供了一种新的工法选择,同时可供“一带一路”中的海外悬索桥工程及超大跨径悬索桥(主跨2 500 m以上)建设推广应用。  相似文献   

13.
悬索桥主缆的锈蚀机理及其防护措施   总被引:2,自引:0,他引:2  
日本几座悬索桥的主缆被发现受到了锈蚀,为确定其锈蚀机理,对主缆内的环境进行了调查,并进行了镀锌钢丝锈蚀模拟试验,研究表明,锈蚀环境与钢丝在主缆内的位置有关,主缆侧面的钢丝最易发生锈蚀,一种采用S形缠绕钢丝和改进涂料的新型方法解决了这一问题,对采用这一方法与常规方法保护的主缆作了长期的露天测试,表明这种方法提高了主缆的防锈性能,另一种新方法是在主缆中输入干燥空气,初步试验表明,这对于提高主缆的防锈性能前景乐观。  相似文献   

14.
陈凯  江夏 《交通科技》2013,(1):30-31,35
在应力及腐蚀环境的耦合作用下,悬索桥主缆易引发应力腐蚀破坏,基于S形钢丝环兼具主缆缠丝定型和密封主缆的特点,泰州大桥采用S形钢丝+表面防腐涂装+除湿系统组成的综合防腐体系,同时引入S形钢丝的施工技术对缠丝时间、缠丝应力和焊接方式进行控制,实现了大桥主缆的顺利施工,并提高了主缆防腐保护效果。  相似文献   

15.
冯传宝 《桥梁建设》2020,50(1):99-104
五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁,主缆采用预制平行高强钢丝索股结构,直径1.3 m。边跨加劲梁采用支架顶推法施工,中跨加劲梁采用缆载吊机由跨中向两侧对称架设,并在中跨侧靠近桥塔位置处合龙;主缆采用平行钢丝索股法架设。主缆制造时,采用无应力长度法计算各索股的无应力下料长度,并在主缆锚固区每处预留长度为±26 cm的垫板空间;主缆架设时,采用4根索股作为基准索股进行架设线形控制,并将主缆长度误差控制在-18~30 cm,均在误差控制范围内;加劲梁施工时,通过分析各因素对加劲梁线形的影响规律,提出控制二期恒载的措施;加劲梁合龙时,采取中跨钢梁不动、起顶边跨钢梁的合龙控制措施;在加劲梁合龙后加载二期恒载。加劲梁合龙后标高误差为-5^+63 mm,线形控制较好。  相似文献   

16.
悬索桥主缆与鞍座间摩擦系数的测定   总被引:2,自引:0,他引:2  
陈策  吉林  冯兆祥 《中外公路》2008,28(1):120-123
为了研究特定工况下中塔主缆在鞍座内的滑移情况,对泰州长江公路大桥开展了主缆与中主鞍座间抗滑移试验研究,试验采用与实桥直径相同的镀锌钢丝,全面模拟各束股与束股之间、钢丝之间、束股与鞍槽间的真实的接触特征,以期使试验测出的主缆与鞍座鞍槽间摩擦系数能较为真实地反映实桥的情况.  相似文献   

17.
悬索桥主缆钢丝腐蚀是国内外悬索桥普遍存在的问题,作为悬索桥的主要承重构件的主缆,它的安全性及其耐久性直接关系到桥梁的使用年限,故对其钢丝进行特殊防护,是保证桥梁正常运行及保证桥梁使用寿命的重要措施。为了更加经济,更加方便地进行主缆钢丝的防护,同时考虑到长远利益,对主缆防腐蚀技术研究现状的了解显得尤为必要,故主要介绍了大跨径悬索桥主缆防腐蚀技术的发展状况。  相似文献   

18.
正武汉杨泗港长江大桥首根主缆索股安装完成,标志这座世界最大跨度双层悬索桥建设正式进入主缆架设阶段。武汉杨泗港长江大桥为双塔双层地锚式钢桁梁公路悬索桥,主跨1 700 m,是武汉市第十座长江大桥,也是长江上首座双层公路大桥。  相似文献   

19.
用干燥空气除湿方法防止主缆腐蚀   总被引:1,自引:0,他引:1  
悬索桥主缆钢丝腐蚀是一个世界性的难题。承担荷载的主缆被缠包钢丝覆盖保护,主缆钢丝腐蚀被隐藏在内部,在发现腐蚀时主缆腐蚀往往发展到比较严重的程度。许多实例表明传统的主缆防护体系不能完全防止腐蚀,仅仅是延缓腐蚀的速度。因此不得不开发和应用主缆除湿系统,除湿系统将干燥空气输入密封主缆,并保持主缆内部干燥,使腐蚀环境不能发生。详细介绍主缆除湿概念、除湿系统设计要点、全寿命周期成本分析和应用经验。  相似文献   

20.
普立特大桥位于云南省宣威市,跨越典型的山区V形峡谷,主桥为主跨628m的双塔单跨钢箱梁悬索桥,主缆采用预制平行钢丝束股,由91束91根Φ5.1mm镀锌高强钢丝组成。结合现场实际情况,宣威岸采用重力锚,普立岸采用隧道锚,锚体均按"分层浇筑、分层支撑、分段接管、实施监控"的方案实施。隧道锚倾角大,开挖采用控制爆破技术减少对周边围岩的扰动,出渣采用有轨运输方式。主缆先导索牵引采用火箭抛掷施工方法,主缆架设采用PWS法施工。主梁为具有良好抗风性能的扁平流线型钢箱梁,钢箱梁架设采用缆索吊机旋转架设法施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号