首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 625 毫秒
1.
CTCS-3级列车运行控制系统利用GSM-R网络进行车地间连续、双向的安全信息传输。而GSM-R系统采用硬切换技术,切换时必然会产生短暂的通信中断,这就会影响列车控制类数据传输业务。为保证安全数据传输的可靠性,迫切要求更短的切换时间和更高的切换成功率。对此,建立GSM-R系统越区切换的随机Petri网模型,分析影响越区切换成功率的因素,并利用MATLAB仿真得到列车运行速度、越区切换中断时间以及列车追踪间隔与越区切换成功率的关系;最后说明列车在350 km/h和430 km/h速度下运行时,越区切换成功率是否满足CTCS-3级系统需求标准要求。  相似文献   

2.
越区切换是保障高速列车车-地数据传输的重要基础,切换失败或异常切换在CTCS-3级线路中可能会引起无线超时甚至系统降级。本文通过简要介绍GSM-R无线网络越区切换的基本流程,阐述越区切换的测试方法,基于高速铁路综合检测列车的动态检测数据分析近年来切换成功率指标的变化趋势,指出造成越区切换故障的原因,并提出优化建议。  相似文献   

3.
CBTC越区切换中断时间分析   总被引:1,自引:0,他引:1  
基于通信的列车控制(CBTC)系统采用IEEE802.11标准作为无线通信传输协议。根据IEEE802.11标准中规定的越区切换流程,采用移动通信系统越区切换中断时间的计算方法,推导出越区切换中断时间与列车运行速度的关系表达式。采用此关系表达式进行理论计算的结果显示,在发射功率为17 dBm,发射和接收天线增益均为10 dB,发射与接收端损耗均为5 dB的条件下,典型行车速度为50,70,90 km.h-1时,越区切换中断时间应分别控制在224,160和124 ms以内才能够保证通信持续正常。建立2列列车追踪运行模型,仿真不同越区切换中断时间的后车运行曲线。仿真结果显示:列车以25 m.s-1(90 km.h-1)的速度行驶时,越区切换中断时间在130 ms以内能够满足列车通信的需求;验证了CBTC越区切换中断时间与列车行驶速度的关系表达式是合理的。  相似文献   

4.
基于SPN的CTCS无线通信形式化建模与分析   总被引:1,自引:0,他引:1  
CTCS-4列车运行控制系统是基于无线通信传输信息的系统,其无线通信系统是一个动态、复杂的分布式系统,正确的形式化验证对于其性质和最终实现具有重要意义。本文主要考虑高速列车在移动闭塞区间条件下CTCS无线通信的形式化建模和可靠性分析,建立随机Petri网(SPN)表示的CTCS无线通信机制模型和列车与无线闭塞中心通信的GSM-R故障恢复模型,给出对通信故障定位的表示方法,并采用TimeNET仿真工具对GSM-R通信系统的可靠性进行分析得出相应结论。分析结果表明,列车在500 km/h的速度下,越区切换成功概率为99.45%,连接丢失概率为10-2/h。最后,本文将分析结果与GSM-R的技术标准进行比较,说明其可靠性满足规范要求。  相似文献   

5.
针对当前CTCS-3系统中GSM-R网络采用的交织双网结构,提出了一个新的网络传输冗余结构。利用马尔可夫链,综合考虑了GSM-R网络通信过程中可能导致通信失败的一些因素:传输错误、传输干扰、连接的丢失、越区切换等,以及列车速度对系统可靠性与有效性的影响,提出2种网络结构的可靠性与有效性模型。通过对新网络结构的仿真分析,采用新网络结构使得系统在工作状态下的逗留时间有了很大的提高,可靠性和有效性均优于传统的网络结构,并且受到列车速度的影响也更小。  相似文献   

6.
武广高铁是双线高速铁路,采用基于GSM-R无线通信平台的CTCS-3级列控系统,车载ATP与地面RBC之间通过GSM-R网络进行列控安全数据双向传输.车-地间数据信息传输可靠性直接关系到高速列车的行车安全和运输效率,车-地间通信中断或无法正确接收数据,列车控制系统会自动由CTCS-3级降为CTCS-2级,速度减至300km/h以下,会对全线列车正点率、运行调度、行车秩序造成极大影响.CTCS-3级降为CTCS-2级的原因多种多样,采取何种手段分析CTCS-3降级的异常现象,进而找到原因,减少甚至避免此类现象发生是铁路管理部门和维护部门的目标.  相似文献   

7.
通过分析CTCS-2、ETCS-2和CTCS-3列车运行控制系统的不同特点,在CTCS-2应用的基础上,提出一种能够满足200~350 km/h列车运行速度的列车运行控制系统(CTCS-235).CTCS-235系统利用CTCS-2系统设备,通过增加轨道电路列控信息、改变闭塞分区设置等方法,解决了满足300~350 km/h列车运行控制信息量和列车安全追踪间隔问题,实现对200~350km/h列车安全控制.同时,CTCS-235系统克服了ETCS-1点式系统实时性较差的缺点;避免了CTCS-3系统由于轨道电路传输信息和GSM-R传输信息不兼容,造成ETCS-2 与CTCS-2兼容性实现复杂等问题.CTCS-235系统结构简单,兼容性好,便于实现,成本低廉.本文阐述CTCS-235系统的构成和工作原理.分析满足300~350 km/h列车控制信息量、闭塞分区设置、兼容性、系统的可靠性和安全性等关键技术.将CTCS-235系统的性能和特点与 CTCS-2、ETCS-1和CTCS-3系统进行了比较.  相似文献   

8.
传输干扰率是铁路数字移动通信系统的服务质量指标中重要的一项,其描述铁路数字移动通信系统误码性能对列车控制信息传输的影响程度.在介绍铁路数字移动通信系统传输干扰基本概念的基础上,分析影响铁路数字移动通信系统传输干扰性能的重要因素,包括列车控制系统信息传输特性、列车控制系统链路层数据传输协议、通信系统越区切换等.基于列车运行速度与传输干扰间的关系,提出采用分布式天线扩大小区覆盖范围的方案,降低数据传输与越区切换发生的碰撞概率,以改善传输干扰性能.通过对分布式天线系统覆盖范围以及对其同频干扰、载波干扰比等性能指标的理论分析,证明了分布式天线覆盖方案可以有效地扩大广义小区的覆盖面积以改善铁路数字移动通信系统传输干扰性能.  相似文献   

9.
随着高速铁路的不断发展和列车速度的不断提高,高铁场景下车地通信的可靠性和高效性引起广泛关注。列车速度的提升导致更加频繁的越区切换,使系统的可靠性得不到保障,因此列车速度的提升对高铁通信网络的安全性和可靠性产生严重影响。本文提出1种将LTE-A(Long Term Evolution-Advanced)网络应用到高速铁路场景并基于协同多点传输/接收CoMP(Coordinated Multi-Point transmission/reception)技术的切换优化方案模型,方案参考协作集加入模型。对系统切换成功率等进行性能分析,并与传统切换方案进行性能对比。分析表明:本文基于CoMP的切换方案可有效提升高移动性下网络的切换成功概率,明显改善系统的可靠性和效率。  相似文献   

10.
基于速度动态函的LTE-R越区切换优化算法   总被引:1,自引:1,他引:0  
传统的LTE-R越区切换算法,采用固定切换迟滞门限和延迟触发时间的切换算法。但是当列车高速运行时,切换成功率明显下降,无法满足高速铁路无线通信系统对Qo S大于99.5%的要求。通过对切换流程、测量参数、控制参数的分析,提出一种基于速度动态函数的越区切换优化算法。该算法在低速、中速、高速3种列车运行状况下,更适宜高速铁路情景切换时机的选择。仿真结果表明:基于椭圆函数的LTE-R越区切换优化算法,既保证了列车在中高速运行时,越区切换成功率有着明显提升,又避免了列车在中低速运行时,乒乓切换事件频率过高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号