首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 453 毫秒
1.
机车传动系统扭转与轮对纵向耦合振动稳定性   总被引:1,自引:0,他引:1  
为研究机车打滑时传动系统扭转与轮对纵向耦合运动作用下传动系统的稳定性,建立了机车单轮对传动系统动力学模型,考虑了轮对回转与纵向振动自由度,对非线性系统微分方程在平衡点附近线性化,并根据线性化系统在状态空间中的特征值判断系统的稳定性,绘制了振动系统临界稳定曲线.分析结果表明:由于轮轨粘着系数的负斜率,传动系统的扭转振动与轮对的纵向振动为不稳定的自激振动,两者与轮对运行速度和轴重有关,速度越大,轴重越小,振动越稳定,因此,传动系统的扭转与轮对的纵向阻尼能很好抑制这种自激振动.  相似文献   

2.
针对负载波动激扰的机车牵引齿轮振动问题,建立了机车牵引齿轮的动力学方程,利用平均法得到了齿轮振动频率与振幅,分析了振幅变化趋势与参数变化对齿轮振动稳定后振幅的影响规律,并进行了仿真试验。分析结果表明:负载力矩是振动速度的函数;振动频率为一个定值,当蠕滑速度分别为0.8、0.2m·s~(-1)时,齿轮的振动频率均为335.0 Hz,非常接近理论值334.8 Hz;根据不同的情况,振幅逐渐减小至0或逐渐增大至一个稳定的值;当蠕滑速度为0.8m·s~(-1)时,齿轮振动稳定后的振幅随着齿轮啮合刚度和啮合阻尼的增大而减小,随着小齿轮上的等效转动惯量和机车轴重的增大而增大,因此,增大齿轮啮合刚度和啮合阻尼、减小小齿轮上的等效转动惯量和机车轴重有助于降低齿轮的振幅。  相似文献   

3.
为揭示高速列车车轮踏面非圆磨耗的产生机理,控制高速列车车轮的非圆磨耗,基于高速列车在雨、雪条件下调速制动可能发生轮轨滑动的特点,建立了由轮对和钢轨组成的轮轨系统摩擦自激振动模型,使用该模型对轮轨系统进行了摩擦自激振动发生趋势的仿真分析.仿真结果表明,在轮对调速制动轮轨蠕滑力达到饱和(即滑动)状态下,轮轨系统容易发生摩擦自激振动,此摩擦自激振动能引起车轮非圆磨耗,并提出控制高速列车调速制动时的制动摩擦力使轮轨不发生滑动是抑制车轮非圆磨耗的主要措施,增大钢轨扣件垂向阻尼是控制高速列车车轮非圆磨耗的可行方法.   相似文献   

4.
为研究高速列车制动区段制动结构/轨道结构对轮对-轨道-制动系统摩擦自激振动的影响,首先,结合现场调研,建立CRH3高速列车轮对-轨道-制动系统有限元模型;然后,采用复特征值法研究考虑轮轨粘滑和制动滚滑作用下的轮对-轨道-制动系统的摩擦自激振动特性;进而探究制动结构中表面织构对整个系统摩擦自激振动特性的影响;最后,对轨道结构中扣件参数进行参数化分析,并采用最小二乘法和粒子群算法求得抑制钢轨波磨的扣件参数的最优解.研究结果表明:高速列车在制动区段时,轮轨粘滑和制动滚滑作用导致的轮对-轨道-制动系统摩擦自激振动的主要频率为526.75 Hz,与现场波磨特征频率接近,说明轮对-轨道-制动系统的摩擦自激振动可能是该区段钢轨波磨的主要诱因;采用具有表面织构的闸片或制动盘能有效抑制制动区段的钢轨波磨,其中沟槽型闸片的抑制效果最佳;当扣件的垂向刚度为65.5 MN/m,横向刚度为46.0 MN/m,垂向阻尼为84.0 kN·s/m和横向阻尼为23.5 kN·s/m时,可以抑制高速列车制动区段的钢轨波磨.  相似文献   

5.
结合现场测试发现的小半径曲线科隆蛋扣件区段内轨的钢轨波磨现象,基于轮轨摩擦自激振动理论研究了该波磨现象的成因。首先,结合现场调研建立了车辆-轨道系统的动力学模型,根据动力学模型建立了相应的转向架-轮对-钢轨系统有限元模型。然后采用复特征值分析研究了轮轨系统的摩擦自激振动特性。最后采用控制变量法研究了一系悬挂垂向刚度阻尼和科隆蛋扣件刚度阻尼对轮轨系统摩擦自激振动的影响规律。研究结果表明:导向轮对与钢轨间的饱和蠕滑力引起的轮轨系统的摩擦自激振动是诱导小半径曲线科隆蛋扣件区段钢轨波磨的主要成因。转向架-轮对-钢轨系统中一系悬挂的垂向刚度和阻尼对轮轨系统摩擦自激振动的影响较小,而科隆蛋扣件参数对轮轨系统摩擦自激振动的影响较为明显。随扣件垂向刚度的增加,轮轨系统的摩擦自激振动呈现先减小后增大的趋势。扣件垂向刚度为20 MN/m时轮轨系统摩擦自激振动发生的可能性最小,同时增大扣件的垂向阻尼可以一定程度抑制轮轨系统的摩擦自激振动。  相似文献   

6.
地铁先锋扣件地段钢轨波磨成因   总被引:1,自引:0,他引:1  
为了研究先锋扣件地段钢轨波磨的成因并给出应对措施,基于摩擦自激振动引起钢轨波磨的理论,建立了包括导向轮对、轨道系统的自激振动有限元模型,使用复特征值法研究了轮对-轨道系统的动态稳定性;通过参数敏感性分析寻找影响钢轨波磨的主导因素,提出抑制乃至消除钢轨波磨的措施. 研究结果表明:轮轨间饱和的蠕滑力引起的轮对-轨道系统频率为319 Hz的自激振动是导致内侧钢轨严重的波磨的主要原因,模型预测的波磨波长为51.4 mm,与实测数据非常接近;参数敏感性分析表明,先锋扣件中的橡胶支承块的弹性模量和阻尼系数越大,钢轨波磨发生的可能性越低;采用弹性模量和阻尼系数有利于抑制乃至消除钢轨波磨,将阻尼系数提高到0.000 1可显著抑制钢轨波磨.   相似文献   

7.
利用现代分叉理论对轮对通过曲线轨道的横向振动稳定性进行了分析。本文考虑大蠕滑和较大横向位移,以及轮轨接触的极端情况,建立轮对在通过曲线轨道时的非线性数学模型。通过算例及仿真结果分析得出:当速度大于特定值时,自由轮对通过曲线轨道就会发生轮轨相撞的情况,但此时的振动仍为准周期运动;当速度进一步增大时,横向运动发展为混沌的结论。  相似文献   

8.
车辆轮对的粘滑振动分析   总被引:4,自引:0,他引:4  
对两接触物体的粘滑振动进行了详尽的分析,给出了粘滑振动发生的条件。分析了驱动速度的粘滑振幅的影响,应用数值方法对三种不同摩擦模型进行了分析计算,结果表明粘滑振幅与驱动速度的似成线性关系,最后从蠕滑力出发对办对可能产生的扭转粘滑振动进行了分析,指出了左右轮轨摩擦不均及曲线通过内轨先产生的粘滑震动的原因。  相似文献   

9.
为研究地铁线路小半径曲线轨道上钢轨波磨的形成机理和影响因素,基于轮轨摩擦耦合自激振动导致钢轨波磨的观点,建立了小半径曲线轨道上由动车轮对-钢轨-轨枕组成的轮轨系统有限元模型.采用复特征值分析和瞬时动态分析研究了轮轨系统的稳定性和动态特性.计算结果表明:在饱和蠕滑力作用下,轮轨系统存在较强的摩擦自激振动趋势,即产生钢轨波磨的趋势;动车轮对上齿轮箱的安装位置对系统的自激振动影响较小;扣件横向刚度对自激振动的影响较小,垂向刚度对自激振动的影响较为明显;不稳定振动随扣件垂向刚度的增加呈现先增大后减小的趋势,当其垂向刚度约为20 MN/mm时,钢轨波磨最容易发生.  相似文献   

10.
缩尺轮轨模型中钢轨波磨的相似性   总被引:2,自引:0,他引:2  
为了研究地铁小半径曲线线路的钢轨波磨现象,基于轮轨间饱和蠕滑力引起摩擦自激振动导致钢轨波磨的理论,对全尺寸和缩尺轮轨模型的相似性进行了研究. 分别建立1∶1和1∶5车辆-轨道系统的动力学模型,确定每个车辆模型在通过小半径曲线线路时前转向架导向轮对与轨道间的蠕滑力饱和情况;根据动力学仿真所得轮轨接触参数,建立轮对-轨道-轨枕有限元模型;采用复特征值分析研究各个轮轨系统的稳定性. 研究结果表明:全尺寸和缩尺车辆模型分别通过小半径曲线线路时,导向轮对内外车轮上的蠕滑力均接近饱和;轮对两端垂向悬挂力的偏差小于3%,轮轨接触角的偏差小于5%;相似不稳定振动模态对应的频率偏差均小于3%;缩尺轮轨模型在动力学表现及稳定性方面与全尺寸模型具有良好的相似性,故可用缩尺模型对钢轨波磨的形成机理进行理论与试验研究.   相似文献   

11.
为了探究高速铁路制动区间的典型钢轨波磨现象,基于轮轨摩擦自激振动诱导钢轨波磨的观点展开了研究,通过武广高速铁路制动区段的现场调研,掌握该区段的波磨特征并采集相应的轨道不平顺;基于轮轨摩擦自激振动诱导钢轨波磨的观点分别建立制动区段高速列车的动/拖车轮对-轨道-制动系统的有限元模型,并利用复特征值法进行动/拖车轮轨系统的摩擦自激振动分析,比较动/拖车轮轨系统在制动和非制动工况下系统发生摩擦自激振动的可能性,以及在制动工况下动车轮轨和拖车轮轨系统的摩擦自激振动情况;使用控制变量法研究了制动系统摩擦系数和扣件垂向刚度对动/拖车轮轨系统摩擦自激振动的影响规律.研究结果表明:制动工况更容易引起系统的摩擦自激振动;拖车轮轨系统更容易引起系统摩擦自激振动;控制制动装置摩擦系数约为0.30,扣件垂向刚度约为50 MN/m时能一定程度降低轮轨系统发生摩擦自激振动的可能性,进而抑制钢轨波磨的产生.  相似文献   

12.
抑制轮轨摩擦自激振动的扣件结构多参数拟合研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究扣件结构参数对轮轨摩擦自激振动的影响,基于轮轨摩擦耦合自激振动的观点建立了小半径曲线轨道整体道床支承的轮轨系统有限元模型;通过现场测试和数值仿真验证了轮轨摩擦自激振动模型,进而基于该模型研究了扣件结构中各参数对轮轨摩擦自激振动的影响;综合考虑多因素之间的相互影响,采用最小二乘法得到了预测轮轨摩擦自激振动发生可能性...  相似文献   

13.
基于摩擦自激理论的单侧钢轨波磨机理分析   总被引:1,自引:1,他引:0       下载免费PDF全文
肖宏  陈鑫  赵越 《西南交通大学学报》2022,57(1):83-89, 119
为了分析重载铁路曲线地段钢轨波磨的产生原因,基于摩擦自激振动理论建立小半径曲线轮轨三维接触精细化模型,讨论了不同扣件刚度、摩擦系数、超高对轮轨系统不稳定摩擦自激振动的影响,揭示了单侧钢轨波磨产生的内在原因,并通过轮轨瞬态动力学方法,分析了单侧钢轨波磨的传递及演化过程. 结果表明:超高和实际运行速度的不匹配是曲线内股钢轨首先产生波磨的主要原因;内股钢轨波磨产生后会导致轮轨系统不稳定,并将振动传递至外股钢轨,从而诱发小半径曲线地段两侧钢轨均产生波磨;适当地提高扣件垂横向刚度、控制轮轨摩擦系数在0.4以下,能够有效地降低轮轨系统发生不稳定振动的趋势,从而抑制波磨发展.    相似文献   

14.
为研究机电耦合作用下齿轮箱体和牵引电机的振动幅值、频谱分布及其随高速列车行驶速度的变化趋势, 分析了三相逆变器输出电压谐波频率分布与牵引电机谐波转矩, 建立了传动系统扭振模型; 基于直接转矩控制理论与车辆系统动力学理论, 搭建了牵引电机控制模型和高速列车多体动力学模型; 通过Simulink和SIMPACK联合仿真平台对比了恒力矩输入与含有谐波转矩的力矩输入模型, 分析了不同速度下牵引电机谐波转矩对高速列车齿轮箱体和牵引电机振动特性的影响。分析结果表明: 当高速列车以250 km·h-1的速度匀速运行时, 齿轮箱体大齿轮上方纵向振动、小齿轮上方纵向与垂向振动受牵引电机谐波转矩影响显著, 在700 Hz主频处振动加速度幅值显著增大, 该频率恰为牵引电机输出转矩基波频率的6倍; 在谐波转矩的影响下, 牵引电机在52 Hz主频处横向振动加速度幅值增加52.78%, 在49 Hz主频处垂向振动加速度幅值增加18.95%;随着高速列车速度的增加, 齿轮箱体纵向与牵引电机各向振动加速度逐渐增加, 牵引电机谐波转矩对齿轮箱体纵向振动加速度均方根的影响逐渐减小, 在6倍基波频率处, 齿轮箱体小齿轮上方和牵引电机纵向与垂向振动加速度均先增大后减小, 在速度为250 km·h-1时达到极大值, 且齿轮箱体和牵引电机的垂向振动受6倍基波频率谐波转矩的影响比纵向振动更为明显, 而其横向振动特性几乎不受谐波转矩的影响。   相似文献   

15.
为了提高车辆-轨道耦合动力学系统可视化仿真的逼真度,采用迹线法计算了车轮踏面接触轮廓面,以平面方式表现轮轨动态接触关系,钢轨以梁的形式参与振动,通过实时建立具有一定垂向、横向和扭转振动形态的钢轨模型来模拟钢轨的振动行为。仿真结果表明,在保证优良的实时性的同时,可以清晰地观察轮轨接触点的变化情况,免去了在复杂的三维场景中变换视点的操作,使轮轨动态接触关系更简洁,通过实时创建钢轨模型,使钢轨振动行为的模拟更逼真。  相似文献   

16.
以悬吊双层闭口箱梁桥面为研究对象,通过风洞试验,针对结构静力耦合与气动干扰对悬吊双层闭口箱梁桥面风振性能影响进行了研究;采用变分模态分解方法对试验监测信号进行模态分解,识别颤振模态;通过振动形态矢量图与相位图对颤振弯扭耦合程度及弯扭相位差进行分析;根据最小二乘法识别颤振导数,基于激励-反馈原理,由颤振导数识别颤振气动阻尼。研究结果表明:在结构静力耦合与气动干扰共同作用下,下层断面发生软颤振,其竖向、扭转振动参与度系数分别为0.85、0.53,其颤振形态倾向于竖向振动;下层断面在自激气动力作用下发生颤振,自激气动力相位差减小导致颤振弯扭相位差减小为81.29°,而上层断面在结构耦合力作用下发生强迫振动,结构耦合力相位差决定上层断面弯扭相位差为100.81°;下层断面竖向振动气动阻尼主要来源于竖向速度自激升力负阻尼以及弯扭速度通过激励反馈所产生的耦合升力负阻尼,分别为60%和40%;下层断面转振动气动阻尼主要来源于扭转速度自激升力矩正阻尼以及弯扭速度通过激励反馈所产生的耦合升力矩正阻尼,分别为45%和50%。可见,对于悬吊双层闭口箱梁桥面,下层断面在竖向振动气动负阻尼驱动下发生偏于竖向振动形态软颤振,下层断面软颤振诱发悬吊双层桥面振动系统整体发生弯扭耦合软颤振。   相似文献   

17.
对世界各国地铁钢轨波磨的基本特征进行了系统梳理,总结了其普遍性与时间集中性,及其与曲线、轨道结构、车辆及其他因素相关性等典型特征,并对其分类方法、形成机理和治理措施进行了综合评述。研究结果表明:钢轨波磨普遍存在于地铁与有轨电车线路中,在新线开通初期与线路改造初期最为严重;一般而言,相对于直线和大半径曲线,小半径曲线的钢轨波磨最为普遍,低轨侧波磨波长短,幅值大,但也有例外,部分大半径曲线及直线上也有分布;波磨的波长特征和发展速度与轨道结构密切相关,轨道结构及部件不匹配时,易出现快速发展的波磨;车轮踏面廓形、轮对定位、悬挂刚度与簧下质量等车辆结构参数会对波磨萌生、发展与表现特征产生影响;波磨的产生还可能与钢轨材质、牵引和制动、运行环境、湿度及摩擦因数有关。地铁钢轨波磨的形成机理主要基于轮轨系统共振、轮轨黏滑(摩擦自激)振动、钢轨振动波反射等理论,对波磨形成过程的纵向动力学影响与系统非线性因素考虑不完善,关于黏滑自激振动与轮轨负摩擦特性对波磨影响的认识还不统一,难以解释直线以及曲线高低轨波磨特征的差异等,对波磨的形成和发展缺乏理论上的主动预测和试验验证;各国主要以钢轨打磨来控制波磨发展,通过调节轨道结构、运行环境,采用钢轨吸振器和轮轨摩擦调节装置,以及优化车辆设计等主动措施来控制波磨的研究仍需进一步开展;未来应针对车辆-轨道系统的动态特性以及实际运行工况下的轮轨微观接触行为和黏滑自激振动特性,开展车辆-轨道系统的轮轨动态磨耗演化仿真,掌握地铁钢轨波磨形成机理和关键因素影响规律,提出控制地铁钢轨波磨的主动措施和轮轨匹配优化设计原则。   相似文献   

18.
针对高速列车运行过程中普遍存在的轮轨激励问题,系统归纳了轮轨激励常用的研究方法,分析了引起轨道不平顺、车轮非圆等轮轨激励的原因及其作用机制,重点研究了车轮多边形磨耗、钢轨波磨等中高频轮轨激励的形成机理;从动力学性能和噪声方面阐述了轮轨激励作用对高速列车运行品质的影响,从疲劳损伤的角度分析了轮轨激励对车辆/轨道系统零部件服役性能的影响;结合现有监测技术和轮轨激励研究方法,提出了高速列车轮轨激励的研究展望。研究结果表明:现场观测、数值仿真和试验模拟是目前研究轮轨激励最常用的方法;轮轨摩擦自激振动、车辆/轨道系统零部件结构共振、材料自身特性及工艺质量是导致轮轨激励形成的根本原因;系统结构参数、运行速度、里程、载重、线路条件等因素都会影响轮轨激励的形成和发展;低频激励的存在虽然会限制列车曲线通过速度,但对车辆/轨道系统零部件服役性能影响不大;中高频激励会严重影响列车运行品质,使系统长期处于中高频振动状态,引起零部件的结构共振,加速系统零部件的疲劳损伤;建议结合实时监测技术和精准的检测手段对轮轨激励形成机理和发展过程展开深入研究,并可通过轮轨匹配型面优化、工艺设备和减振降噪装置智能化产品的研发、车辆/轨道系统结构优化和维护保养等措施来抑制或减缓轮轨激励的产生和发展。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号