首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
钢-混凝土结合梁桥的受力行为受到混凝土桥面板时效特性的影响,也直接影响桥梁的耐久性。对混凝土桥面板横向裂缝产生的原因进行研究,可更好地了解混凝土板的拉应力产生原因。从浇注混凝土板行为进行的现场观测和试验,结果表明混凝土水化热和浇注顺序对桥面板拉应力有重要影响。在实际施工中,混凝土板的临界拉应力有所降低。将限制水化热影响的试验结果与理论计算进行比较,并以此为基础建立了推算在早期混凝土中产生裂缝可能性  相似文献   

2.
钢-混凝土组合梁桥的受力性能受到混凝土桥面板时间效应的影响,该影响会改变此类结构的耐久性。目前,就组合桥中混凝土板横向开裂问题进行了详细的研究,有助于更好地理解混凝土板产生拉应力的原因。现场测试与实验室试验均可以从混凝土板浇注之时开始观测混凝土板的受力行为。其结果表明:混凝土水化作用以及浇注顺序对混凝土板中拉应力有很大的影响,这表明对大多数典型桥梁,混凝土板是在施工阶段达到最危险拉应力。对限制水化作用的方法进行试验,并将结果与数值模拟进行了比较,根据这些模拟建立了评估早期混凝土开裂模式的概率准则。  相似文献   

3.
某桥为2×122.5m独塔斜拉桥,主梁为Π形截面预应力钢筋混凝土梁,该桥建成于20世纪90年代,经过多年运营,50号混凝土桥面板普遍出现纵向裂缝。为研究裂缝成因,采用有限元软件计算各种荷载作用下Π形梁桥面板的横向应力,通过荷载试验实测Π形梁桥面板的横向应力和纵向裂缝开展情况,并进行对比分析。结果表明:自重荷载不是桥面板产生纵向开裂的因素;汽车荷载对桥面板纵向开裂有一定的影响,但不是主要原因;按85规范温度梯度计算,桥面板底面未出现横向拉应力,按2015规范正温度梯度计算,桥面板底面拉应力达4.46 MPa,超过现行规范《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中有关C50混凝土的抗拉强度设计值,85规范关于温度梯度荷载的规定偏不安全,是导致桥面板纵向开裂的主要原因;横隔梁预应力对桥面板纵向开裂的影响较小。  相似文献   

4.
为了研究混凝土浇筑早期水化反应引起的温度变化对钢混组合梁桥变形和应力的影响,以一简支梁桥为试验对象,测试了混凝土桥面板和钢梁在混凝土浇筑前后温度和应变变化数据,并对钢梁由于温度变化引起的应力进行了解析。分析结果表明:混凝土在凝结硬化过程中温度先升后降,在升温阶段结束后,混凝土板获得足够的刚度来约束钢梁的变形,在降温阶段结束后混凝土桥面板与钢梁变形协调。混凝土板在降温阶段的收缩受到了钢梁顶板的约束,拉应力开始产生。降温阶段结束后混凝土板中拉应力的大小与升温阶段结束后钢梁横截面上的温度梯度以及混凝土板与钢梁顶板的温差有关。  相似文献   

5.
为了研究高温沥青混合料摊铺时正交异性钢桥面板在温度影响下的结构受力响应,基于瞬态温度场理论和热力学边界假设条件,确定数值模拟所需的各项热力学参数,以及通过试验-数值模拟方法得到了界面热阻参数。采用生死单元法建立了正交异性钢桥面板在高温沥青混合料摊铺全过程的时变温度场有限元模型,并结合某长江大桥在浇注式沥青混凝土摊铺过程中的实测数据,验证了该模拟方法的可靠性。基于该模型分析了高温摊铺下正交异性钢桥面板温度场时空变化规律。结果表明,在开始摊铺浇注式沥青混凝土30 min左右,摊铺区域处跨中钢桥面板上最高温度达到95℃,在结构分析中应考虑温度应力;位于摊铺区域的钢桥面板主要承受压应力,最大压应力温度增量139 MPa,位于非摊铺区的钢桥面板主要受拉应力,最大拉应力温度增量70 MPa;顶板温度的横向影响范围在摊铺边缘左右各约1 m,横隔板处顶板的纵向温度较其他截面略低6~7℃。该分析结果可为设计人员在计算摊铺施工时提供不利影响分析依据,并为施工人员在摊铺过程中进行施工监测提供参考。  相似文献   

6.
后张法预应力混凝土空心板在我国已得到了广泛应用.但在施工过程中,实施预应力张拉时,在空心板端面的顶、底板处均出现了沿纵向的裂缝.该文针对裂缝的产生,对20 m空心板端部应力进行了空间有限元分析.并根据有限元分析的结果,指出空心板端面横向拉应力过大导致了裂缝的产生,并提出了可行的裂缝防治措施.  相似文献   

7.
武汉天兴洲公铁两用长江大桥斜拉桥铁路桥面采用纵横梁体系的混凝土结合桥面板、有碴桥面、结合桥面板处于空间受力状态.针对铁路纵横梁体系的静活载效应、混凝土道碴槽板的弯曲应力及局部关键区域的受力行为进行专项模型试验,研究结合桥面系的力学行为、应力分布规律及应力传递路径等关键问题.试验结果表明:该桥铁路桥面采用的纵横梁体系混凝土板结合桥面系受力合理、响应明确,结构应力及刚度满足规范要求;卸载后残余应变、位移很小,结构处于弹性工作状态,混凝土道碴板未发现可见裂缝;结合桥面系的受力性能良好,设计合理可行.  相似文献   

8.
为研究公路钢桥正交异性板的疲劳破坏行为及疲劳强度,以重庆江津中渡长江大桥为背景,选取其主跨梁段建立正交异性钢桥面板的足尺试验模型,进行疲劳试验。试验过程中对疲劳易损构造处的应力数据进行采集,观测其开裂情况,并采用热点应力法评估其疲劳强度。结果表明:加劲肋腹板与横隔板切口焊接处出现疲劳裂缝;顶板与加劲肋腹板焊接处出现纵向疲劳裂缝;横隔板切口处无疲劳裂缝产生,但存在较大拉应力;加劲肋腹板与横隔板切口焊接处的疲劳强度大于Eurocode规范中的90类细节的疲劳强度,也大于AASHTO规范中的C类疲劳强度,顶板与加劲肋腹板焊接处的疲劳强度大于Eurocode规范中的112类细节的疲劳强度,也大于AASHTO规范中的C类疲劳强度。  相似文献   

9.
厦漳跨海大桥南汊主桥为跨径布置135m+300m+135m的双塔斜拉桥.该桥主梁采用钢-混结合梁,双工字形钢主梁、横梁和小纵梁形成钢构架,与混凝土桥面板通过剪力钉连接,在工字形钢主梁的上翼缘板上焊接锚拉板.对主梁进行整体和局部分析,并对主梁混凝土桥面板正应力和存放时间2个关键问题进行研究.分析结果表明:钢主梁和混凝土桥面板受力均满足规范要求,且有一定的安全储备;结合梁斜拉桥混凝土桥面板正应力分析中必须考虑弯矩和轴向力综合作用下的剪力滞效应的影响;混凝土桥面板存梁时间对主梁受力有影响,建议存梁时间不宜小于半年.  相似文献   

10.
为了研究下层混凝土的厚度对桥面板负弯矩区的影响,本文利用Midas/Civil和Midas/FEA有限元软件,建立杆系加实体的双层连续组合梁桥模型,通过改变负弯矩区下层混凝土的厚度,分析其对箱梁以及桥面板的影响,从而确定使得连续梁桥受力最为合理的下层混凝土厚度。主要结果为随着下层混凝土厚度的增加,箱梁的剪应力和拉应力会随之减小,桥面板的裂缝宽度也会随之减小。当厚度超过400mm时,箱梁的拉应力和桥面板裂缝宽度变化趋于平缓,综合考虑当其厚度在300-400mm之间时其结构受力最为合理。  相似文献   

11.
清水浦大桥为主跨468 m的组合梁斜拉桥,钢梁为由纵梁、横梁及小纵梁组成的梁格体系,桥面板分预制(厚27 cm)、现浇(厚28 cm)2种,为控制桥面板裂缝的产生,研究组合梁桥面板防裂技术.研究得到主要防裂技术有:采取结构设计措施以抵抗局部拉应力,消除桥面板结构性裂缝,如在跨中和边跨尾端桥面板中设置纵向、横向预应力钢绞线,梁上斜拉索用钢锚箱锚固(钢锚箱位于箱形纵梁外腹板外侧),尽量增大预制桥面板面积等;预制桥面板采用聚丙烯纤维混凝土,现浇桥面板采用纤维素纤维混凝土,在低温季节安装中跨合龙段桥面板及塔梁竖向支座等工艺措施;优化桥面板安装工艺及设备,以有效控制施工期裂缝的产生;应用硅化剂防护体系.  相似文献   

12.
组合梁是混凝土桥面板与钢梁通过连接件组合在一起共同受力的梁型。组合梁斜拉桥的桥面板裂缝问题一直是影响桥梁耐久性设计的关键因素之一,在组合梁斜拉桥中,较多采用的是双边主梁式组合梁,主要介绍双边主梁式组合梁在设计过程中所采取的提高桥面板抗裂、防裂性能保证措施,辅助墩墩顶预抬高后回落增加桥面板压应力储备技术,以及锚拉板位置细部构造设计等以提高结构耐久性。  相似文献   

13.
基于拉压等效与弯曲等效方法,提出了钢纤维混凝土与钢结合梁桥面板换算为单一材料等效板单元的计算模式 ,导出了等效板单元的厚度和弹性模量的计算式.可方便地采用一般的有限元程序对结合梁桥进行空间分析. 对一座实际的钢纤维混凝土与钢结合梁桥进行了空间应力分析及静载试验.  相似文献   

14.
对20m后张预应力混凝土宽幅空心板的底板纵向裂缝的成因进行分析,利用通用有限元软件ANSYS,建立宽幅空心板的三维有限元的模型,模拟预应力筋和混凝土的相互作用,对梁底的应力状态进行分析,钢束设计布置形状和预应力钢束张拉引起的结构变形对纵向裂缝产生的影响以及混凝土所处的应力状态、泊松效应和施工质量的影响。  相似文献   

15.
为了进行钢桥面板U肋焊接残余应力精确计算及影响因素定量分析,以星海湾跨海大桥钢桥面板U肋为研究对象,在ABAQUS有限元软件中,建立钢桥面板U肋局部模型,通过自编的Dflux子程序,进行双椭球热源的加载,模拟V型坡口焊的焊接过程,得到顶板与U肋板残余应力分布,从而研究顶板板厚与焊接坡口角度2种因素对U肋焊接残余应力的影响。结果表明:本文的分析方法得到的焊接残余应力计算结果与前人试验数据结果对比,两者吻合较好,本文分析方法有效;顶板与U肋板在靠近焊缝处都出现最大残余拉应力,且均超过材料的屈服极限;随着顶板板厚增大,顶板与U肋板的残余拉应力峰值增大;而随着坡口角度增大,顶板与U肋板的残余拉应力峰值则减小。  相似文献   

16.
提出了钢—UHPC轻型组合桥梁结构,以克服传统钢-混凝土组合结构桥梁混凝土桥面板的不足。(1)从基本力学性能和经济性方面对轻型组合梁和传统组合梁进行对比,表明轻型组合梁具有自重低,力学性能优越,施工方便快捷,全寿命经济效益显著等特征,具有较好的应用前景。(2)对等厚板、带纵肋桥面板、华夫桥面板3种结构型式的UHPC桥面板进行有限元分析,结果表明:华夫桥面板竖向位移最小,整体刚度最大;带纵(横)肋桥面板仅纵肋下缘纵向拉应力最大,只需在纵肋下缘配置纵向受拉钢筋;华夫桥面板方案横向拉应力峰值小于较带纵肋方案。(3)基于华夫桥面板方案开展了足尺条带模型试验,正负弯矩试验的初裂应力分别为19.4 MPa和9.1 MPa,华夫桥面板方案能够满足正常使用极限状态的裂缝限值。  相似文献   

17.
灌河大桥为钢-混结合梁斜拉桥。为分析该桥桥面板混凝土收缩应力水平,分别通过试验测定和理论计算公式,得到混凝土前期收缩应变时程曲线和弹性模量时程曲线,根据收缩应变结果进行有限元模拟,得到混凝土前期和后期收缩应力,并对结合梁桥面板混凝土的收缩应力进行评定。结果表明:灌河大桥桥面板混凝土前期收缩量和收缩应力的试验结果大于JTG D62-2004规范公式计算结果;采用杆系模型得到桥面板混凝土顺桥向后期收缩应力最大值为1.5MPa,采用板壳模型得到桥面板混凝土应力最大值顺桥向为1.5MPa、横桥向为2.2MPa,需要采取有效措施以减小桥面板的收缩应力。  相似文献   

18.
桥梁建造由装配化向组装化的转换是未来桥梁工程发展的方向,钢-混组合桥梁是一种与工业化、组装化高度契合的结构形式;活性粉末混凝土等超高性能水泥基材料的应用为钢-混组合结构桥梁的轻型化和组装化提供了新的契机与挑战。提出基于高弹模和高韧性混凝土-粗骨料活性粉末混凝土的预制桥面板及板间组装式连接结构(CSL),从而减轻结构自重、改善预制桥面板间的连接性能,实现桥梁结构的组装化作业,提升桥梁的建造质量和速度。通过四点弯曲试验考察预制粗骨料活性粉末混凝土桥面板及其干式连接结构的结构行为,分析加载全过程挠度的发展特点,探明极限承载能力及疲劳性能。静力试验结果表明:通过CSL连接而成的桥面板具有优异的变形能力和弯曲韧性,破坏均发生在粗骨料活性粉末混凝土板内,CSL的抗弯极限承载力高于粗骨料活性粉末混凝土桥面板;CSL的钢混连接面处弯曲初裂应力值不小于9.0 MPa,接近粗骨料活性粉末混凝土的弯曲初裂应力,并具有良好的裂缝约束能力。疲劳试验结果表明:CSL中的钢结构应力幅较小,经过800万次疲劳加载后,CSL连接桥面板未发生疲劳破坏,桥面板间连接焊缝应力幅仅26.8 MPa,不会出现疲劳破坏;CSL中的预加力对连接结构的静动力性能具有重要影响。  相似文献   

19.
设计室内模型试验,测试在不同荷载作用下混凝土板的应变,并采用收缩预测模型对混凝土板的平均收缩应变进行理论计算,同时结合有限元仿真手段,研究混凝土面板不同成型阶段产生的收缩应变对拉应力影响。结果表明:混凝土板各断面处的测点应变随着荷载增加呈非线性增长,混凝土试件临界荷载宜为120~140 k N,施加的荷载大于临界荷载时,各测点应变迅速增大,截面3和截面5的应变值和应变增长率最大,在混凝土板的裂缝控制中应予以考虑。试件存放的时间越久,平均收缩应变越大。受未收缩层约束和变形不协调的影响,混凝土板由收缩应变引起的最大拉应力不同,成型8、33,136 d后,混凝土板外层X向最大拉应力分别为2、3,2 MPa。  相似文献   

20.
新型钢板组合梁桥因为施工简便、受力明确并能充分利用钢和混凝土两种材料优势,在国外得到广泛应用,但在我国尚处于起步阶段。论文以一座在建钢板组合梁桥为工程背景,细致研究了该结构体系在考虑钢梁安装、桥面板吊装、湿接缝浇筑等全施工过程下,成桥状态以及运营状态下结构的受力行为与安全性能。研究表明,预制桥面板的钢板梁桥施工工序,钢梁的应力水平较低,但是桥面板的会出现较大拉应力;汽车荷载作用下钢梁应力和桥面板受力较为不利,桥面板会带裂缝工作,此外钢梁部分加劲板件和横隔梁存在优化前景,需要细致研究。研究成果可为新型钢板梁桥在我国的工程实践提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号