首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
车辆耐撞性研究是当前车辆被动安全领域的前沿方向,对于提高道路交通安全水平有非常重要的意义,而薄壁管结构优化是提高车辆耐撞性最为有效的方法之一。详细阐释车辆耐撞性的涵义,叙述薄壁管结构优化方法理论支撑;回顾薄壁管优化车辆耐撞性研究发展历程,概括主要研究的内容、方法以及成果,并提出薄壁管综合分析的耐撞性方法前沿;对比分析不同的结构优化设计研究方法之间的优劣;总结了薄壁管优化耐撞性研究的发展前景。  相似文献   

2.
为提高汽车吸能盒结构耐撞性,受毛竹微观结构启发,提出3种不同的仿生双菱形肋边多胞薄壁结构。建立仿生双菱形肋边多胞薄壁结构的有限元模型,通过有限元仿真对比研究仿生双菱形肋边多胞薄壁结构与传统八边形多胞薄壁结构的耐撞性。分析双菱形肋边布置方式、内层壁厚等因素对新型薄壁结构吸能特性和变形模式的影响。结果表明,与传统八边形多胞薄壁结构相比,仿生双菱形肋边多胞薄壁结构的吸能特性有了明显的提升;双菱形肋边布置方式和内外层壁厚对结构吸能特性均有一定影响;随着内层壁厚的增加,结构最大峰值力减小,但总能量吸收和比吸能减少,载荷平稳度降低。仿生双菱形肋边多胞薄壁结构能有效降低乘员在汽车正面碰撞中所受的伤害,可应用到新能源汽车吸能盒的设计开发中。  相似文献   

3.
汽车碰撞过程中,非理想的斜向碰撞较为普遍。本文中通过对三维负泊松比点阵结构进行多工况耐撞性研究,发现冲击角度对三维负泊松比点阵结构的耐撞性有较大影响,随着冲击角度的增大,吸能量呈下降趋势。将梯度负泊松比点阵结构作为填充材料引入吸能盒设计,以吸能盒外壳厚度与内芯3个厚度梯度值为设计变量,最大综合吸能量、最小轴向峰值力和质量为优化目标,质量和设计变量为约束条件,基于多岛遗传算法进行多工况多目标优化设计。结果表明,在质量和最大峰值力增加不大的条件下,负泊松比结构填充吸能盒的综合吸能量与各冲击角度的耐撞性均得到大幅提升,优化效果显著。  相似文献   

4.
提出了一种基于子结构拓扑优化的大客车车身骨架耐撞性改进设计方法。首先通过测试和仿真进行某承载式大客车耐撞性评价,分析车身结构变形的症结;提取前端驾驶区骨架为子结构,以其碰撞吸能量相同为等效条件,进行子结构耐撞性分析与改进;接着为控制子结构的局部失稳变形,以吸能盒碰撞力峰值为载荷条件,进行子结构空间区域拓扑优化,完成8组改进方案的对比分析,选取质量最轻的达标方案进行台车实验验证;最后将该方案导入整车结构中进行耐撞性改进验证。结果表明:整车的耐撞性得到有效提高。  相似文献   

5.
将轻质高强的碳纤维增强树脂基复合材料(CFRP)应用到多胞结构设计中,有望进一步提升CFRP薄壁结构的耐撞性能及吸能效率。为了研究CFRP多胞结构在多角度加载工况作用下的能量吸收机制及耐撞性能,采用机织平纹CFRP预浸料制备CFRP单胞管以及2个不同规格的CFRP多胞管,并通过调整壁厚使所有结构的质量保持相等;随后,对上述3个试样开展准静态轴向压溃试验,通过试验揭示CFRP多胞管的耐撞性能。此外,建立CFRP多胞管的有限元模型,采用数值仿真的方法揭示多胞管的能量吸收机制,并基于试验验证的有限元模型进一步分析9种不同规格的CFRP多胞结构在多种加载角度下的压溃性能。最后,采用多指标评价方法(COPRAS)对不同构型的多胞管在多种压溃角度下的耐撞性能进行综合评价。试验结果表明:单胞管发生了不稳定的局部屈曲,多胞管发生了稳定的渐进失效,并且在等质量的条件下,多胞管的总吸能比单胞管的总吸能高约68%。仿真结果表明:层内损伤是CFRP多胞管以及单胞管的主要吸能机制,其能量耗散值约占总能量的50%;且随着加载角度的增加,各结构的总吸能逐渐下降,但各吸能机制所耗散能量的占比变化不大,增加胞数以及内壁胞壁的厚度均能小幅度提升多胞管的能量吸收特性。综合耐撞性评价结果表明:试样MT3-4[胞数为9,内部胞壁厚度b为1.178 0 mm(5层),外部胞壁厚度c为0.235 6 mm(1层)]在多种压溃角度下具有更好的综合耐撞性能。  相似文献   

6.
为实现汽车设计的耐撞性和轻量化,将高强度钢拼焊板(TWB)结构运用到保险杠横梁,结合多目标离散优化方法,进行优化设计。运用Hypermesh软件,建立了原保险杠模型和拼焊板保险杠模型,并用LS-DYNA软件进行验证。横梁内、外板均由厚度不同的5块高强度钢板焊接而成。以提高保险杠横梁的吸能量,控制质量增加为优化目标,进行横梁三点静压仿真试验,对板材的材料和厚度参数进行迭代优化。结果表明:优化后的拼焊板保险杠横梁吸能量提高81.66%,质量只增加8.96%;从而满足了耐撞性和轻量化的要求,并具有更好的变形模式和碰撞载荷特性。  相似文献   

7.
为提升汽车安全性能及实现轻量化目标,对4种不同截面铝合金吸能盒的耐撞性进行对比分析,并研究宽高比及材料强度对耐撞性能的影响。研究表明:双十字型截面吸能盒耐撞性能最优;在汽车结构设计中,宽高比要控制在0.7至1.0之间,越接近1.0吸能效率越高;吸能随材料强度增加而增加,可以通过加强材料减少壁厚进一步实现轻量化。  相似文献   

8.
三波护栏的耐撞性研究   总被引:6,自引:0,他引:6  
通过建立完整的汽车-三波护栏-乘员-座椅-安全带系统模型,应用LS-D Y N A研究了三波护栏在强力撞击下的耐撞性与吸能特性,得出了梁板是吸能主体、三波护栏对失控车辆具有很强的引导能力、室内乘员的安全性能够满足要求等结论,指出了三波护栏在抵御强力撞击方面的主要问题是护拦的完整性不足,为三波护栏耐撞性能的提高指明了方向。  相似文献   

9.
提高汽车耐撞性的能量吸收结构撞击吸能特性研究   总被引:5,自引:1,他引:5  
安全法规对车辆的耐撞性能提出了要求,性能优越的能量吸收结构可以有效地改善汽车的耐撞性能。文中研究了多种金属材料的薄壁圆柱管沿轴向压缩的历程,总结了轴对称叠缩型、过渡型、非轴对称叠缩型和翻裂型4种典型的破坏模式,它们与能量吸收机理和冲击历程紧密相关。比较了不同类型吸能结构的缓冲和吸能性能,并对这类能量吸收结构的设计提出了建议。  相似文献   

10.
基于正交设计的汽车前纵梁吸能结构的优化   总被引:1,自引:0,他引:1  
为了增强某款SUV车的耐撞性,提出了一种带诱导槽的八边形结构、可逐级吸收碰撞能量的前纵梁,并建立了其准静态纵向压溃和台车碰撞两种有限元模型。在台车模型中考虑了台车质心位置和车轮模型的刚度、高速旋转与摩擦特性的影响;采用正交试验设计法对前纵梁的材料、壁厚和焊点位置进行了优化,并将优化结果用于底盘结构。底盘耐撞性试验结果表明,优化后结构具有较好的吸能能力。  相似文献   

11.
陈昌明  伍腾飞 《北京汽车》2008,(6):23-25,30
汽车前纵梁是汽车发生正面碰撞时的主要吸能部件之一,前纵梁吸能性的好坏,直接影响到整车耐撞性的好坏。文中建立了某轿车的前纵梁有限元模型,用LS-DYNA有限元软件仿真来得到其吸能性能,通过改进纵梁结构,得到比较满意的结果,30ms吸能量达到了13024J;也为以后纵梁的设计进行一些前期的研究。  相似文献   

12.
利用仿生结构改变两座电动汽车铝合金前防撞横梁的截面形状,以提升电动汽车正面碰撞下的耐撞性。在Hypermesh平台上建立了前防撞梁全宽正面碰撞力学模型和防撞横梁的三点弯曲模型,对比了口字形、梯度形、蜗牛壳形、蜘蛛网形和胚胎球形5 种截形防撞横梁的正面碰撞仿真结果及静态弯曲刚度。轻量化、吸能量、B柱加速度、弯曲刚度是衡量仿生防撞梁耐撞性能的4 个关键指标。结果表明,具有胚胎球形截面的防撞横梁耐撞性更好。在胚胎球形截面对照方面,研究了不同胚胎球形数量和布置对碰撞仿真结果的影响,得出具有两个胚胎球形截面的防撞横梁耐撞性最优。通过采用两个球形防撞横梁的不同料厚组合,分析了料厚对碰撞结果的影响。  相似文献   

13.
王笑 《北京汽车》2011,(4):39-41
为提供汽车不同区域的吸能特性与薄壁金属结构匹配的理论依据,一方面应用正交设计理论得到多参数影响下最优吸能特性的薄壁结构水平组合。建立了比吸能与试验参数的二次非线性回归方程并进行了比吸能预测值与试验值的比较,得到理想结果;另一方面,通过不同结构碰撞峰值力与加速度比较,完善了汽车不同区域耐撞性要求下薄壁吸能评价体系。  相似文献   

14.
汽车安全性能是消费者购车时的关键考量因素。其中汽车的耐撞性能尤为关键,其核心部件吸能盒可以通过变形和压溃等机制吸收冲击能量,从而更大限度地保护乘客安全。为优化薄壁结构吸能盒性能,提高车辆耐撞防护性,分析了薄壁结构吸能盒的性能评价指标及其结构类型,揭示其变形吸能特征,最后提出对未来薄壁吸能盒发展的策略和建议,旨在为汽车安全领域的研究和实践提供思路。  相似文献   

15.
以客车作为车辆结构安全性能研究的目标车辆,HYPERMESH软件计算的数值结果作为车身研究的基础数据,通过客车前部每个关键吸能部件在碰撞过程中的变形情况来分析客车前部结构耐撞性。其次通过对比客车前部吸能部件变形情况,进一步分析客车结构刚度是否达到最佳的设计和匹配。  相似文献   

16.
为了确定桥梁防船撞波纹钢夹层结构的合理布置方式和结构参数,根据某长江大桥桥墩防撞需求设计波纹钢夹层结构,采用LS-DYNA软件建立夹层结构和船艏的有限元模型,模拟船艏撞击夹层结构的过程,分析不同波纹板布置方向、波纹板厚度和面板厚度下夹层结构的耐撞性指标和撞击力。结果表明:波纹板竖直布置比水平布置具备更好的吸能效果;波纹板厚度对耐撞性指标的影响不大;耐撞性指标随面板厚度的增大先增大后减小,厚度为7mm时耐撞性指标最大;波纹钢夹层结构对船舶撞击力的削减达到60%以上;波纹钢夹层结构对撞击能量不敏感,具备较好的稳健性和吸能效果。  相似文献   

17.
在汽车碰撞过程中,汽车前纵梁是主要的吸能装置.通过对方管薄壁结构和蜂窝型多胞结构的耐撞性进行对比分析可知,蜂窝型多胞结构杆件具有较好的吸能特性.将蜂窝型杆件应用于汽车前纵梁上进行碰撞分析.结果显示,蜂窝型多胞结构具有更优越的耐撞性能,且碰撞过程的材料利用率也较高.  相似文献   

18.
为满足车身轻量化和耐撞性设计的要求,采用材料替换与结构改进相结合的方法对前端进行优化。基于试验验证的整车正面碰撞模型,建立了铝制前端模型并与钢制设计方案进行了耐撞性对比。为提高铝制前端耐撞性能,设计了不同胞数的多胞构型截面,并在三点弯曲和轴向压溃工况下分析其吸能特性。运用多目标优化方法对多胞前端的结构参数进行寻优。结果表明,优化后的铝制多胞结构能在改善整车耐撞性的同时,显著减轻前端质量。  相似文献   

19.
为了进一步改善车辆结构部件的耐撞性能,基于甲虫翅鞘微观锥形小梁结构提出新颖的仿生层级薄壁方管(BHST)结构,包括SBHST-4,SBHST-9,BHST-4和BHST-9。通过非线性有限元软件和试验验证结果建立BHST有限元模型,并对比其与传统多胞薄壁方管结构的轴向吸能特性。考虑到结构壁厚、截面尺寸和空间位置因素对BHST-9结构耐撞性能的影响,采用参数分析方法,研究小方锥管下截面尺寸b分别和空间位置参数λ、结构壁厚t对BHST-9结构轴向吸能特性的影响。此外,结合径向基函数(RBF)神经网络代理模型技术与非支配排序遗传算法(NSGA-Ⅱ)对BHST-9结构进行多目标优化分析,以获取BHST-9结构的最优配置。研究结果表明:BHST-9结构呈现出较优异的轴向吸能效果,其比吸能较传统9胞薄壁方管在等质量的条件下提高了22.87%,初始峰值力降低了10.22%;适当增加结构壁厚和小方锥管下截面尺寸有利于提升BHST-9结构的吸能能力;随着λ的增加,BHST-9结构的比吸能呈现出先增后减的趋势,当λ为0.5时,不同下截面尺寸小方锥管的BHST-9结构整体上具有较高的比吸能和较稳定的折叠变形模式,且初始峰值力变化幅度较小,但BHST-9结构中的仿生小方锥管下截面尺寸和结构壁厚较空间位置参数对比吸能的提升作用更为显著;当BHST-9结构初始峰值力不高于140kN时,其最优设计参数t,b分别为1.61,24.67mm。  相似文献   

20.
建立某微型客车平台翻滚试验有限元仿真模型,通过对运动姿态、运动参数和部件变形进行对标分析,验证有限元模型的可靠性。根据车辆变形、受力和吸能等试验与仿真结果,确定两根顶盖横梁和左右A柱内板为目标车型在翻滚碰撞过程的关键结构。从车身结构耐撞特性与吸能特性出发,综合考虑生存空间侵入与结构能量吸收的评价指标,利用Opt LHD试验设计、KRG近似模型构建、NAGA-Ⅱ多目标寻优和比例系数取优等方法完成关键结构的优化。优化后关键结构总质量减轻24.78%,结构总吸能减少18.81%,关键构件的平均比吸能提升11.89%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号