首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 146 毫秒
1.
长悬臂混凝土箱梁是一种增加翼缘板宽度的新型截面箱梁,目前我国规范所规定的计算箱梁行车道翼缘板有效分布宽度概念对于长悬臂翼缘板已不再适用。以有限元分析为基础,应用大型有限元ANSYS计算软件,在集中荷载作用下,考虑横向预应力的影响,对长悬臂箱梁翼缘板进行内力分析。结果表明:箱梁端部翼缘板根部负弯矩与箱梁跨中翼缘板根部负弯矩具有明显差异,且横向预应力对翼缘板内弯矩的分布有重要影响。结合数据分析,研究翼缘板内弯矩的分布规律,为其配筋设计提出建议。  相似文献   

2.
为了研究空心板桥铰缝失效对荷载横向分布的影响,推导了空心板桥整体受力及铰缝失效的典型力学模型,阐明了铰缝失效时荷载横向重分布的一般规律,并采用ANSYS有限元分析了不同损伤位置和损伤程度铰缝对上部结构荷载横向分布及其效应的影响。结果表明,铰缝失效改变了空心板桥上部结构的整体受力性能,损伤程度越大,上部结构组合板或单板效应越明显;失效铰缝相邻空心板荷载横向分布系数相对变化较大,最大为1.44和0.6倍;由于失效铰缝一侧空心板承担荷载比例增大,另一侧减小,导致相邻空心板挠度差异较大而产生错位、内力状态差别明显,建议加强偏载侧空心板应力监测。  相似文献   

3.
针对目前地铁车站结构设计中,结构截面刚度变化对车站结构内力的影响规律还有待进一步讨论分析的现状,以某地铁车站为例,利用ANSYS 13.0建立车站结构空间有限元模型。通过调整结构梁板刚度比和梁柱刚度比来探讨地铁车站结构内力的分布规律。由此得出结论:随着梁板刚度比的增大,各层板横向最大弯矩均减少,侧墙横向最大正弯矩增大,各层板纵梁最大弯矩均增大,柱子最大轴力减少;随着梁柱刚度比的增大,各层板纵梁最大弯矩和最大剪力以及柱子最大轴力均出现先增大后或减少或不变的现象,但以增大为主。  相似文献   

4.
成都地铁二号线区间盾构隧道局部穿过砂卵石下伏膨胀岩土地层,为获得下伏地层膨胀荷载对盾构隧道衬砌结构内力的影响规律,采用数值方法分析了下伏地层在不同范围发生局部膨胀时对衬砌结构外侧压力的影响.通过现场测试得到了盾尾注浆时和隧道贯通后衬砌结构荷载及内力的分布规律,并与不同膨胀荷载下结构内力的计算结果进行了比较.研究表明:膨胀圈厚度及范围对膨胀后压力增量的影响较小,膨胀力对压力增量的影响较大;局部膨胀荷载的存在将增大管片结构弯矩,对结构受力不利,负弯矩是下伏膨胀岩土地层盾构隧道结构设计的控制因素.计算砂卵石下伏膨胀岩土地层中盾构隧道结构内力时,应考虑膨胀荷载的影响,膨胀荷载可采用数值分析等手段确定.   相似文献   

5.
结合梅市口路永定河大桥上部主梁设计,通过有限元软件Midas Civil对悬臂长度比较大的悬臂板进行仿真分析,同时通过与现行规范进行比较,掌握不同加载位置悬臂根部弯矩差别及其与常规计算结果的差别,并通过合理的布筋或结构措施,确保梁端悬臂板的结构受力安全。  相似文献   

6.
为研究波形钢腹板部分斜拉桥在悬臂施工阶段主梁的剪力滞规律,以某单箱四室斜腹板波形钢腹板部分斜拉桥为实例,采用Midas/FEA有限元软件建立精细有限单元计算模型,研究悬臂施工阶段主梁的剪力滞效应分布规律。计算结果表明:在主梁最大悬臂状态,悬臂根部截面主梁顶板的应力分布最不均匀,剪力滞系数最大,其剪力滞系数离开悬臂根部后迅速减小,然后经历增大减小再增大的过程;梁段顶板在自重、斜拉索、预应力荷载共同作用下截面剪力滞效应受预应力荷载效应控制,均多呈现正剪力滞效应;主梁施工过程中,截面剪力滞效应规律不变;在桥梁施工过程分析时以主梁最大悬臂状态下的箱梁顶底板剪力滞系数为参考。  相似文献   

7.
文章以某变截面连续梁为背景,阐述了挂篮悬臂浇筑法和落地支架现浇法两种施工方法对桥梁内力的影响.通过施工过程模拟,对桥梁在两种施工方法下的内力及变形进行计算;结合施工现场情况将不同施工方法的工期和成本进行对比分析.结果表明,连续梁的弯矩、变形受施工方法的影响较大;与挂篮悬臂浇筑法相比,采用落地支架施工的PC连续梁负弯矩减小,而正弯矩增大,边跨跨中的竖向挠度增加,同时缩短工期、降低成本.  相似文献   

8.
建立了考虑桥台-土相互作用的墙式整体桥台无缝桥的空间有限元模型,采用实测数据验证了模型的准确性;分析了不同荷载工况下主梁与桥台的受力特征,研究了温度、台后填土密实度与桥梁跨径对桥梁受力特征的影响。研究结果表明:与同等跨径简支梁桥相比,墙式整体桥台无缝桥受力最不利主梁的跨中弯矩降低了20%~40%,跨中与梁端弯矩之和降低了约28%,说明主梁内力分布比较均匀,结构纵、横桥向整体性增强;桥台顶部存在较大的弯矩和剪力,桥台变形比较复杂;墙式整体桥台无缝桥的内力和变形受温度作用的影响较为明显,且梯度升温与整体降温在梁端产生正弯矩,梯度降温与整体升温在梁端产生负弯矩,因此,设计过程中对于不同的构件应选用合适的荷载工况;台后填土密实度由松散变化至密实时,整体升温或降温作用下主梁梁端和跨中弯矩变化幅度小于5%,桥台变形幅度小于9%,说明台后填土密实度对主梁弯矩和桥台变形的影响较小;当桥梁跨径由6m增加至13m时,桥台顶部弯矩增加了1.781倍,桥台内力随跨径的增大而快速增大,因此,在墙式整体桥台无缝桥梁的设计时,建议最大跨径不超过10m,以控制桥台在正常使用极限状态下的混凝土裂缝宽度。  相似文献   

9.
列车轮载作用会引发轨道板的高频自振效应. 为分析高频荷载下CRTS Ⅱ型轨道板的疲劳特性以及板体自振效应对疲劳寿命的影响程度,基于现有的疲劳损伤准则,探究轮对作用间隙阶段轨道板自振影响下的疲劳特性. 对脱空长度影响下轨道板的疲劳寿命进行预测,并与仅考虑荷载作用次数的结果进行对比. 结果表明:轨道结构完好时,列车轮载引发轨道板伤损的可能性较小;若列车行车速度为360 km/h,列车轮载在引发轨道板共振前即发生板底开裂;轨道结构完好时,列车轮载引发的板体自振效应对轨道板疲劳损伤影响程度最大,此时列车轮载对轨道板产生约1.8倍的疲劳荷载当量;当轨道板脱空长度大于2.0倍枕距后,可忽略板体自振对疲劳损伤的影响;轨道板的脱空长度大于3.2倍枕距后,现场无砟轨道难以维持60 a的使用寿命.   相似文献   

10.
混凝土箱梁悬臂板空间数值仿真   总被引:4,自引:2,他引:4  
针对混凝土箱梁悬臂板诸多算法的不合理性,应用大型通用有限元分析软件ANSYS,以三维实体单元对混凝土箱梁悬臂板进行空间数值仿真分析研究.考虑箱梁端部和跨中悬臂板根部的区别,研究了影响变厚度悬臂根部弯矩的主要因素.分析初拟的三种局部精细分析技术实施方案,总结局部精细分析技术在混凝土箱梁悬臂板空间数值仿真中的应用技巧.试验结果表明:美国规范公式计算结果过于保守、可接受程度低;桥规公式、魏斯特加公式以及沙柯公式计算结果单一、适用范围偏窄;空间数值仿真分析的结果与试验结果比较接近,准确度高.  相似文献   

11.
何延松 《北方交通》2012,(4):113-114
对于c值大于2.5m的悬臂板,分别按桥规悬臂板车轮荷载分布宽度法、巴赫方法及沙柯-巴赫方法进行计算,并对计算结果进行了分析。  相似文献   

12.
为了研究高速列车荷载作用下,Ⅰ型轨道板端部与CA砂浆层间的离缝现象对钢轨、轨道板及车辆的力学性能的影响,建立了车辆-Ⅰ型板式轨道垂向耦合动力学分析模型.以轮轨力、钢轨位移及加速度、轨道板位移,拉应力及加速度、车辆加速度为评价指标,分析了不同离缝长度和高度工况下上述指标的变化规律.研究结果表明:板端离缝长度越短,轨道板越容易脱空受力;轨道板脱空受力时的离缝高度等于该离缝长度下板的竖向最大位移;离缝长度及高度的变化对轨道结构及车辆的受力状态均有影响,但离缝长度的影响更大;长度不大于0.6 m的板端离缝主要使钢轨及轨道板的变形及受力状态恶化,长度大于0.6 m的板端离缝也会使车辆的振动加速度超过容许值.   相似文献   

13.
为了揭示偏载作用下大长径比水润滑尾轴承的流体动力学行为, 提出了分布式动力学特性参数测试方法; 在船舶大型推进轴系模拟试验台上, 以直径为324 mm、长度为1 200 mm的大尺寸水润滑尾轴承为试验对象, 在轴承上、沿轴线方向选取3个截面, 每个截面布置相互垂直的2个电涡流传感器, 以获取轴心轨迹; 在转轴上、沿轴线方向选取4个截面, 每个截面各布置1个微型压力传感器, 并随轴一起旋转, 采用无线遥测技术获取4个截面的全周水膜压力分布; 通过改变相邻轴承的标高来调整转轴倾斜程度, 研究了转速和标高对试验轴承水膜压力分布和轴颈运行状态的影响规律。研究结果表明: 偏载导致离悬臂端最近的截面压力测试值明显大于其他截面, 最大值约为3.6 MPa; 轴承的润滑状态沿轴向呈现分区特性, 越靠近悬臂端, 弹流润滑特征越明显, 且不同的轴承分段需要不同的速度来产生动压水膜; 离悬臂端最近的截面压力曲线顶部的“水囊”随转速升高而出现, 但在220 r·min-1时变得不明显, 各截面压力分布出现明显的负压现象; 轴颈在轴承孔中的空间形态较复杂, 在轴承两侧严重下弯, 在中部拱起, 并且不同轴承截面的偏位角不同, 离悬臂端越远, 轴心轨迹面积越大。可见, 与具有单一润滑状态和直线轴颈的滑动轴承相比, 偏载下大长径比水润滑尾轴承的流体动力学模型应考虑轴向润滑状态分区、弯曲轴颈和负压等因素。   相似文献   

14.
为揭示组合梁斜拉桥在悬拼施工时,索梁锚固区斜向裂缝的开裂机理,从实际受力状态出发,分析了该区域桥面板剪应力和正应力的分布特点,并结合应力莫尔圆理论给出了裂缝成因及其形态特征;基于相关规范及桁架模型,提出了斜向配筋和L形配筋设计的抗裂措施;通过台州湾跨海大桥实例分析,验证了锚固区桥面板的应力分布特点与配筋方法的有效性。研究结果表明:悬拼施工时,锚固区桥面板的面内剪应力主要由拉索索力的竖向分力和水平分力提供,纵、横桥向正应力主要由吊重荷载引起的斜拉桥整体弯矩、拉索索力增加引起的局部负弯矩和局部承压提供;纵桥向正应力的增加是引起索梁锚固区主拉应力变大的主要原因,当主拉应力大于混凝土抗拉强度时,桥面板存在较大的斜向开裂风险;考虑到局部承压的作用,裂缝一般首先出现在索梁锚固点附近的桥面板顶部;当逐渐远离锚固区时,局部负弯矩及局部承压影响减小,桥面板顶板正应力减小,主拉应力减小,裂缝的发展方向与纵桥向夹角逐渐减小,同时,桥面板底板正应力由压应力变成拉应力,主拉应力增大,裂缝产生贯通的可能性增大;基于混凝土板斜向开裂的桁架模型,对索梁锚固区配置L形抗裂钢筋,顶板最大主拉应力降低了1.26 MPa,其中,纵桥向正应力最大可减小0.91 MPa,面内剪应力可减小0.50 MPa,即配置抗裂钢筋能够达到一定的抗弯和抗剪的效果。   相似文献   

15.
桥头搭板受力特性及适应性   总被引:2,自引:0,他引:2  
运用MARC软件,通过研编用户子程序模拟车辆的移动荷载,应用迭代接触算法Contact和单元生死技术模拟搭板与填土之间接触和脱空的不同受力状态,并基于均匀沉降和不均匀沉降两种地基模式,考虑搭板受力和变形的耦合,分析了搭板的受力特性和适应性。当脱空长度在1.08 m范围内时,板底弯拉应力值与完全弹性支承时相等,但随着脱空长度的继续增大而显著增大,完全脱空时板底弯拉应力与简支板相等,板底最大弯拉应力的荷载作用位置在桥台与1/2板长之间。搭板对地基沉降的适应性表现为:长度6 m的搭板适用于处理地基沉降在3 cm以内的桥头路段;8 m长度的搭板适用于处理地基沉降在4 cm以内的桥头路段,而10 m搭板适用于处理地基沉降在5 cm以内的桥头路段。  相似文献   

16.
为了解决全无缝桥梁路桥连接板裂缝宽度与板内力过大等问题,将橡胶粉等体积部分替代细砂掺入应变硬化水泥基复合(SHCC)材料可制备低弹性模量的SHCC材料(LEM-SHCC),用于全无缝桥梁路桥连接板;进行了5种不同体积橡胶粉掺量(0、5%、10%、15%和20%)LEM-SHCC基本材性(密度、抗压强度和弹性模量)及拉伸性能试验,分析了橡胶粉掺量对LEM-SHCC的强度和变形性能的影响,并采用拉、压应变比差评价了橡胶粉掺量对SHCC材料的影响,获得了LEM-SHCC的最优配合比;针对橡胶粉掺量为15%的LEM-SHCC路桥连接板,研究了最不利荷载作用下(温降荷载)其吸纳变形能力、拉伸变形性能及开裂后裂缝分布规律,并与同尺寸SHCC路桥连接板的各项性能进行了比对;进行了LEM-SHCC路桥连接板的敏感参数(橡胶粉掺量、板底摩擦因数和板长等主要影响因素)有限元对比分析。研究结果表明:橡胶粉的掺入降低了SHCC的弹性模量,提升了SHCC的延性,当橡胶粉掺量达15%时,SHCC的弹性模量降低了40%,而延性却提升了近50%,且裂缝宽度有效地控制在60 μm以内;LEM-SHCC路桥连接板吸纳纵向变形达到10 mm时,LEM-SHCC路桥连接板表面微裂缝多(近180条),裂缝间距小(15~80 mm),且开裂后裂缝宽度控制在60 μm以内,此时张拉端板应力为2.1 MPa,锚固端锚固力为150.5 kN,卸载后裂缝闭合,无纤维被拉出或拉断;吸纳同样的纵向变形10 mm时,LEM-SHCC板的内力比同尺寸的SHCC板小;LEM-SHCC板的内力受橡胶粉掺量的影响较大,当其掺量为15%时,LEM-SHCC板性能最优,LEM-SHCC板的内力受板底摩擦因数的影响不大,板长的增加能有效地改善LEM-SHCC板的受力性能,推荐LEM-SHCC路桥连接板的设计长度为8.5 m。   相似文献   

17.
采用傅立叶级数法研究了不同荷载作用下轴力和剪切效应对盾构隧道变形的影响.?计及剪切变形所产生的地基反力,建立了弯曲变形的控制微分方程,推导了剪切变形的计算公式;采用与既有理论解对比的方法,验证了级数解的正确性;通过对比计算,分析了截面形式、端承条件、荷载形式、长高比以及有无弹性地基对盾构隧道剪切变形的影响,剪切刚度对弯...  相似文献   

18.
高速铁路无缝钢轨断缝瞬态冲击行为分析   总被引:1,自引:1,他引:0  
无缝线路钢轨焊缝及其热影响区在温度力作用下可能发生钢轨折断形成断缝. 为了研究钢轨折断对列车运营安全的影响,对轮轨接触受力特性及其材料高频动态响应进行了分析. 首先,建立了ANSYS/LSDYNA三维轮轨瞬态滚动接触有限元模型;然后,根据不同速度轮轨力时域响应规律,选择了合适的模型计算工况,并且通过计算轮轨接触受力特性和材料高频动态响应,分析了车轮跨越断缝的安全问题;最后,通过小波变换获取了车轮跨越断缝时轮轨力的频域分布. 结果表明:断缝处轮轨高频冲击力峰值随断缝长度变化先减小后增大,转折点处断缝长度与行车速度负相关;车轮通过断缝时,钢轨最大剪切应力超过材料破坏极限,易导致钢轨材料脆断;轮轨力时频图中存在两个特殊频率成分,分别对应高频冲击荷载(1 500 Hz左右)及二次冲击荷载(450 Hz左右),断缝长度对轮轨力频域分布影响较小.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号