首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
以道路子网为研究对象,采用Elman神经网络实现道路网多断面交通流短时预测. 首先通过提取交通流空间特性对道路网进行划分,降低道路网整体分析复杂度及解空间维数,提高交通流预测的计算精度和效率;其次以实时采集的交通流数据为基础,并以重构的交通流时间序列作为输入,采用Elman神经网络实现道路网多断面交通流同时预测;最后,基于城市快速路多断面交通流量数据对短时交通流预测方法进行验证,并与BP神经网络预测结果进行对比分析. 验证结果表明,本文提出的道路网划分方法能够划分出满足预测需求的子路网,在划分的子路网上,应用Elman神经网络能够实现道路网多断面同时预测,且预测效果优于BP神经网络.  相似文献   

2.
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.  相似文献   

3.
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.  相似文献   

4.
针对当前的交通状态,对交通流理论和交通流预测的基本原理进行了总结。根据交通流预测的特性提出了应用深度学习的方法开展预测,并在此基础上对受限玻尔兹曼机、深度信念网、循环神经网络等在内的主流深度学习方法进行介绍。  相似文献   

5.
通过文献梳理、专家访谈和试验场景构建等方法,分析了道路指定断面和区域路网宏观交通流预测的国内外研究现状和发展趋势,归纳了局部断面交通流预测方法,包括传统机器学习、递归神经网络和混合模型,分析了卷积神经网络、图神经网络和融合多因素网络的特点,阐述了方法的原理、优势、局限性和应用场景,总结了现有场景交通数据集类别,从采样周期与采集方式角度归纳了国内外主流交通数据集。分析结果表明:递归神经网络可以有效获取交通数据的历史规律,但存在梯度爆炸、计算复杂度高、长时预测准确度不佳等问题;图神经网络针对路网拓扑连接关系引入了图结构,在考虑路网和交通流数据的时空相关性上具有明显优势;融合多因素网络充分考虑天气、道路、事故等内外部因素的影响,有效提升了交通流预测的实时性和鲁棒性;由于交通数据采集困难、外部因素影响难以量化、机器学习方法可解释性差等原因,交通流预测方法的改进受到了限制;未来应从交通信息有效挖掘和图卷积方法完善两方面入手,拓宽图结构在交通领域的应用和考虑非常态交通场景,进一步揭示交通数据的内在规律,开发更准确、高效的交通流预测方法,推动交通流预测在工业界的落地应用。  相似文献   

6.
为适应未来智能网联环境下精细化交通流预测需求,提出一种基于混合深度学习 (Hybrid Deep Learning, HDL)的车道级交通流速度预测模型. 模型以智能网联系统强大的数据采集和计算能力为基础,采用集成经验模态分解算法将原始速度序列分解为多个固有模态函数分量和残差分量,并将所得分量重构为模型输入;利用双向长短期记忆神经网络和注意力机制,构建深度学习模型框架;为检验模型预测精度和可靠性,选择北京市二环路多个连续车道断面速度数据进行算法验证. 结果表明,HDL模型在不同车道均有理想的预测结果,单步和多步预测精度均显著优于对比模型.  相似文献   

7.
�������Ԥ��ģ�͵Ķ�ʱ��ͨ��Ԥ��   总被引:1,自引:0,他引:1  
在现代智能交通系统中,短时交通流预测是实现先进的交通控制和交通诱导的关键技术之一.为了提高短时交通流预测的准确性,本文提出了一种基于组合预测模型的短时交通流预测方法.一方面,根据当前的交通流数据来动态调整其对未来预测的影响;另一方面,通过对历史交通流数据的时空特性分析,利用数据挖掘领域的相关知识寻求与当前交通流特性最为相似的历史曲线,并以其为基础来获得预测值的匹配值;然后,将二者获得的信息进行融合,采用多种不同的组合方式来实现短时交通流预测.以厦门市莲花路口断面的交通流量为例,通过对仿真图像和数据的分析,得出各种组合方法的预测平均绝对相对误差均小于10%,能够较好地满足交通诱导系统的需求.  相似文献   

8.
为有效调控道路网时空资源,需实时估计交通流参数。若要准确估计交通流参数,应详细考虑道路网交通流时空特征。本文基于生成对抗网络,提出一种能捕捉交通流时空特征的实时估计模型,即TSTGAN模型。该模型包括生成器和判别器两部分,生成器利用门控卷积神经网络 捕捉交通流的动态空间特征,使用基于注意力机制的长短期记忆神经网络分析交通流的动态时间特征;采用门控卷积神经网络与长短期记忆神经网络构建判别器;通过对抗方式训练生成对抗网络的生成器与判别器,实时获得交通流参数估计值。使用中国山东省淄博市12个卡口设备和美国加州洛杉矶市23个线圈检测器获得的交通流量数据,验证TSTGAN模型的可靠性。结果表 明,TSTGAN模型引入的时空模块能有效提取交通流的时空特征,所得均方根误差和平均绝对误差比现有模型分别降低2.12%~42.41%和1.66%~40.49%,证明所提TSTGAN模型可以提高交通 流参数的估计精度。  相似文献   

9.
针对现有交通流预测方法未充分考虑多断面车流演变规律,提出基于时延特性建模的时空相关性计算方法. 该方法采用对不同断面、不同时刻交通流的分布相似性度量,对输入的车辆到达数据序列进行切割构建时空相似度矩阵,得到相邻断面之间的时延参数. 基于时延特性建模,将多断面之间的流量信息进行融合,使用长短时记忆(LSTM)网络进行流量预测. 通过对实际路段数据的预测和结果分析,验证所提方法的有效性和实用性.  相似文献   

10.
短时交通流预测是实施智能交通控制的基础和保障.针对目前短时交通流预测方法拟合交通数据的能力偏弱,以及过分依赖历史数据的不足,提出一种基于深度学习回归机的短时交通流预测方法.首先构建深度学习回归机算法模型,包括受限玻尔兹曼机的显层节点输入端,受限玻尔兹曼机的若干中间层,以及径向基支持向量回归机输出端.通过实验将深度学习回归机预测方法与其他典型的短时交通流预测算法进行比较,结果表明,在相同的数据和计算平台下,本文提出的深度学习回归机预测方法精度更高,且预测实时性也能满足实际的需求.  相似文献   

11.
为准确预测高速公路交通流,缓解高速公路交通拥堵现象,本文提出一种考虑多特征的高速公路交通流预测模型。首先将高速公路当前道路与上下游的交通流、天气等数据转化为一个二维矩阵,并利用滑动窗口模型获得输入样本的最佳长度;然后将样本数据输入集成深度学习模型训练并提取交通流数据的特征,随后输出预测结果;最后,将某高速公路交通流数据用于工作日和节假日两组实验。结果表明:集成深度学习模型比单一模型预测高速公路交通流的效果要好,工作日的高速公路交通流预测精度远高于节假日,本文模型将平均绝对误差由 6.40辆·(20 min)-1 降到5.450辆·(20 min)-1,说明考虑多种因素可以提升高速公路交通流预测精度。  相似文献   

12.
一种基于深度学习的离散化交通状态判别方法   总被引:1,自引:0,他引:1  
在智能交通信号控制和交通流诱导系统中,交通环境状态的有效判别是影响交通控制决策的先决条件,本文针对交通流产生的大数据信息,结合深度学习算法提出一种离散化交通状态的判别方法.给出了包括交通状态数据采集、状态数据描述、状态深度学习和判别等功能模块的系统架构,构建了一种离散交通状态编码方法,为深度学习交通状态特征提供了数据基础.模型训练阶段,对采集到的二值和连续值交通状态数据,分别构建了两种不同的深度置信网络实现交通状态特征的无监督学习;模型微调阶段,在整合形成的高层抽象特征向量顶端增加softmax分类器,采用反向传播算法实现参数微调.最后,该方法基于VISSIM微观交通软件进行仿真,实验结果表明,离散交通状态编码方法可有效表达交通状态,基于深度学习的交通状态判别方法相对传统方法具有较高的准确度.  相似文献   

13.
目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并应用于路网短时交通流预测.该预测模型不仅可以自动优化LSSVR模型参数,而且可以从高维路网交通流数据中选择有助于交通流预测的变量子集.实验结果表明,与LSSVR模型相比,所提方法具有更好的预测能力;而且,少量时空变量被选择出来构建预测模型,极大减少了信息冗余,改进了模型可解释性.  相似文献   

14.
应用BP神经网络来对路段短时交通流进行预测,预测精度和收敛速度都不是很理想,为了克服BP神经网络自身存在的非线性逼近缺陷,依据小波的时频域特征,将小波变换和BP神经网络结合起来,提出一种基于小波神经网络的短时交通流预测方法,给出了具体的网络学习算法,并结合实地调查数据进行了对比测试,分析结果证明了小波神经网络模型对短时交通流预测的有效性.  相似文献   

15.
基于交通视频监控图像的天气识别已经成为智能交通系统中重要的研究课题. 虽然卷积神经网络(convolutional neural network,CNN)在图像识别技术获得了巨大的发展,但是针对复杂交通场景的天气识别问题,现有的模型在特征表达方面仍然面临着巨大的挑战. 为了提取丰富的语义特征,提出了基于联合投票机制的深度神经网络(deep neural network,DNN)模型. 所提出的模型包括两个核心模块:基于通道和空间注意力机制的二阶特征模块和基于复合特征结果联合投票机制的分类模块, 用以提取不同天气图像中的判别性信息,提高在复杂交通场景下的天气识别性能. 最后,在两个基准天气分类数据集上进行了验证试验,结果表明:对于复杂场景条件下的天气识别问题,所提出的基于联合投票机制的深度神经网络模型的识别正确率优于目前最好的天气识别方法的1.97%.   相似文献   

16.
梳理了近70年关于跟驰模型的研究, 根据建模方法将其分为理论驱动与数据驱动2类模型, 并归纳了跟驰模型的研究热点; 从人类因素、基础设施、交通信息、异质交通流、新建模型理论5个方面对理论驱动类跟驰模型的研究进行了综述; 根据所用机器学习算法的不同, 从模糊逻辑、人工神经网络、实例学习、支持向量回归、深度学习5个方面对数据驱动类跟驰模型的研究进行了综述。分析结果表明: 理论驱动类跟驰模型以理论推演交通现象, 对影响因素的考量难以全面, 部分人类因素难以量化, 驾驶人决策制定过程的解释不够准确, 异质交通流的跟驰模型缺乏一般交通条件下有效性的理论基础和形式化证明; 数据驱动类跟驰模型以交通现象归纳交通规律, 由于数据的来源、评价指标及评价方法不同, 导致应用机器学习算法得到的模型无法系统比较; 数据驱动类模型侧重于从微观角度研究驾驶行为特性, 对复杂交通现象(如交通震荡、迟滞等)的解释性不强; 跟驰模型的研究应创新数据采集方法, 捕捉驾驶人的心理倾向、感知特性和认知能力, 并量化人类因素的影响和充分利用大数据; 数据驱动类跟驰模型应为无人驾驶技术发展提供技术支持; 在自动驾驶完全普及之前, 人工驾驶与自动驾驶混合场景下的驾驶人跟驰行为特性尚待深入研究。   相似文献   

17.
城市路网规模的不断扩大,给城市交通控制系统带来严峻的挑战.本文对交叉口之间的交通关联关系及表征交叉口关联性的交通流参数进行了分析,从而明确路网的拓扑结构,建立了以路网拓扑结构为基础的交叉口重要度估计模型,并根据有向深度搜索算法设计了区域信号协调优化方法.该方法从全局的角度建立了一种均衡疏导路网交通流的信号协调控制方法.最后将本文提出的方法与Synchro7优化出的控制方案对比,利用微观仿真软件SUMO进行控制效益评价,仿真结果表明,本文的方法可以有效提高信号控制效益.  相似文献   

18.
为解决混合交通流饱和流率测算的实时性和时变性问题,实时获得混合交通流的饱和流率用以信号配时,本文提出基于自动车牌识别数据(Automatic License Plate Recognition,ALPR)的混合交通流饱和流率实时自动估计方法。首先,分信号周期提取车头时距数据,在当前车和后车车辆类型确定时车头时距满足同一正态分布的假设基础上,构建车头时距的高斯混合模型并应用 EM(Expectation Maximization) 算 法 求 解 ;其 次 ,基 于 赤 池 信 息 准 则 (Akaike Information Criterion,AIC)选取高斯混合模型的最优个数,拟合数据得到高斯混合模型参数;最后,根据车头时距的高斯混合模型推算出混合交通流饱和流率。以杭州城市道路3条路段的ALPR数据为例,分析基于 ALPR 数据获取车头时距的采样误差,对模型进行验证,并与传统的 HCM(Highway Capacity Manual)方法进行对比。结果表明:基于ALPR数据的车头时距采样误差满足精度要求; 与HCM的实测法相比,模型所得的混合饱和交通流率相对误差小,结果准确;该方法与传统的标准车流饱和流率折算法效果相近,并考虑混合交通流时变特性,能自动部署实时计算,鲁棒性良好,有实际应用意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号