首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
将直径0.26mm的铜包钢线集束装入铜管进行拉拔变形、800℃淬火中间处理、拉拔变形,制成钢纤维增强铜基复合导线.钢纤维在铜基体中均匀连续分布,钢纤维由铁素体与马氏体双相组织组成,铜、钢界面呈锯齿状.铜体积比为57%、变形率为2.8时,复合导线拉伸强度达到1256MPa,相对电导率达到43.5% IACS,在大幅度降低铜含量的条件下,获得了良好的综合性能指标.  相似文献   

2.
采用碳钢管作为基层、纯钛管作为覆层、纯铜箔作为中间层,利用拉拔-内压热扩散复合法,制备碳钢、铜、钛三金属管复合管.借助扫描电镜(SEM)观察了复合界面附近的显微组织并用能谱分析仪(EDS)测定了界面附近的元素分布.通过剪切和硬度试验测定了界面剪切强度及其附近的显微硬度.研究扩散温度和时间工艺因素对界面附近组织和剪切强度的影响.结果表明:扩散退火后,界面结合紧密,无明显缝隙;钛/铜界面的强度随保温时间增加而有所提高,铜/钢界面强度有所降低;铜、钛原子互扩散至对方基体中,使基体组织、硬度发生改变,并在铜、钛界面上形成了TiCu、TiCu2、βTiCu4化合物;扩散时间对剪切强度的影响有一限度,扩散时间超过限度时,剪切强度降低.  相似文献   

3.
采用碳钢管作为基层、纯钛管作为覆层、纯铜箔作为中间层,利用拉拔-内压热扩散复合法,制备碳钢、铜、钛三金属管复合管.借助扫描电镜(SEM)观察了复合界面附近的显微组织并用能谱分析仪(EDS)测定了界面附近的元素分布.通过剪切和硬度试验测定了界面剪切强度及其附近的显微硬度.研究扩散温度和时间工艺因素对界面附近组织和剪切强度的影响.结果表明:扩散退火后,界面结合紧密,无明显缝隙;钛/铜界面的强度随保温时间增加而有所提高,铜/钢界面强度有所降低;铜、钛原子互扩散至对方基体中,使基体组织、硬度发生改变,并在铜、钛界面上形成了TiCu、TiCu2、βTiCu4化合物;扩散时间对剪切强度的影响有一限度,扩散时间超过限度时,剪切强度降低.  相似文献   

4.
利用多孔铜修饰电极检测PM 2.5中硝酸根离子的含量.探讨了硝酸根离子在多孔铜修饰电极上的电化学性质.研究了硝酸根离子的响应电流与浓度的关系.结果表明:硝酸根离子还原峰电流与其浓度在6.67×10-6 ~2.00×10-4 mol/L范围内呈良好的线性关系,相关系数r=0.998,方法检出限为2.00×10-6 mol/L.将该方法用于PM2.5中硝酸根离子含量的检测,测定结果与用分光光度法测定相近,说明该电化学测定方法可以用于PM2.5中硝酸根离子含量的检测结果是可靠的,具有一定的实用价值.  相似文献   

5.
简要介绍了点焊电极表面处理的方法,对涂层材料的要求、点焊电极失效机理以及涂层材料对点焊电极失效机理的影响;另外介绍了点焊电极表面处理的发展方向。  相似文献   

6.
将直径0.26mm的铜包钢线集束装入铜管进行拉拔变形、800%淬火中间处理、拉拔变形,制成钢纤维增强铜基复合导线。钢纤维在铜基体中均匀连续分布,钢纤维由铁素体与马氏体双相组织组成,铜、钢界面呈锯齿状。铜体积比为57%、变形率为2.8时,复合导线拉伸强度达到1256MPa,相对电导率达到43.5%IACS,在大幅度降低铜含量的条件下,获得了良好的综合性能指标。  相似文献   

7.
用碱性缓冲溶液分散碳纳米管(CNTs),通过层层自组装的方法构筑了聚二甲基烯丙基氯化铵(PDDA)/CNTs多层膜电极,采用差分脉冲伏安法同时测定。紫外-可见光谱法对PDDA/CNTs多层膜的组装过程进行了表征。研究了PDDA/CNTs组装层数、支持电解质种类、富集电位和富集时间等对溶出峰电流的影响。该多层膜修饰电极检测铅、铜离子具有良好的线性范围和抗干扰能力。  相似文献   

8.
机械合金化制备颗粒增强铜基复合材料的研究进展   总被引:8,自引:0,他引:8  
颗粒增强铜基复合材料是近年来出现的新型金属材料之一,具有良好的综合性能。对近期颗粒增强铜基复合材料的研究进展进行了概括性介绍,重点论述了机械合金化制备颗粒增强相的类型和铜基复合材料的机制。  相似文献   

9.
本文对Cr—Cr—Cu合金材料制造的电极在点焊镀锌钢板时的失效形式进行了分析.结果表明:Cr—Zr-Cu合金材料制造的电极在点焊镀锌钢板时的失效形式主要是电极头部的塑性变形、电极端面的合金化以及再结晶和粘附。点焊镀锌钢板时电极失效的主要原因是Cr—Zr—Cu名金材料的软化温度低,点焊温度下的硬度、强度低和端面的合金化。  相似文献   

10.
以Mn(Ac)2为锰源,以K2S2O8为氧化剂,采用液相氧化法制备了氧化锰材料和炭/氧化锰复合材料.采用循环伏安、交流阻抗和恒流充放电方法对两种电极材料的电化学电容性能进了表征.结果表明:由于炭的担载,复合材料的电化学电容性能优于纯氧化锰.氧化锰对称型电容器的比电容要远远低于炭/氧化锰的比电容,后者是前者的7~12倍....  相似文献   

11.
以Ti2AlC和Cu粉作为原料,分别采用滚筒球磨和高能球磨对原料粉进行预混处理,在1 150℃下原位热压反应制备了TiC0.5/Cu(Al)复合材料.实验结果表明,Al从Ti2AlC溶出进入Cu中,Ti2AlC分解并转变成TiC0.5相,然而滚筒球磨制备的复合材料中生成少量AlCu2Ti相.通过对原料粉高能球磨处理,制备后的复合材料AlCu2Ti相消失,细小的TiC0.5颗粒均匀分布于基体中.两种不同方法制备的复合材料的弯曲强度和维氏硬度试验结果表明,高能球磨工艺能提高TiC0.5/Cu(Al)复合材料的弯曲强度,同时维氏硬度略有降低.其中,高能球磨处理后制备的27% TiC0.5/Cu(Al)复合材料的弯曲强度达到981 MPa,维氏硬度为2.43 GPa.  相似文献   

12.
Novel hybrid Cu matrix composites reinforced by graphite (Gr) particle with volume fraction of 5%?C15% and nano-SiC particle (nano-SiCp) with volume fraction of 3% have been prepared by powder metallurgy. The results show that Gr and nano-SiCp distribute uniformly in the Cu matrix. With increasing the volume fraction of Gr, the tensile strength of the composites decreases from 114 to 51MPa and the elastic modulus decreases from 75 to 60GPa. Compared with the sintered composites, the tensile properties including elastic modulus, tensile strength, yield strength and tensile elongation of the hot-extruded (nano-SiCp+Gr)/Cu composites are improved greatly due to higher relative density of the composites and more uniform distribution of Gr and nano-SiCp, in addition to finer grain size of the matrix as a result of dynamic recovery and recrystallization which occur during hot extrusion process.  相似文献   

13.
AbstractElectron beam welding of in situ TiB2p reinforced aluminum composites was studied.The results show that no obvious pores or cracks is presented in the weld seam.The grains in the weld seam are remarkably refined and TiB2 particles distribute much more homogeneously than that in base metal.The hardness values of fusion zone and heat affected zone(HAZ)are both increased in comparison with that of base metal.There are no interface reactions between TiB2 particle and Al matrix.This results supply the evidence that the novel TiB2p reinforced aluminum composites can be well joined with the electron beam welding.  相似文献   

14.
Electron beam welding of in situ TiB2p reinforced aluminum composites was studied. The results show that no obvious pores or cracks is presented in the weld seam. The grains in the weld seam are remarkably refined and TiB2 particles distribute much more homogeneously than that in base metal. The hardness values of fusion zone and heat affected zone (HAZ) are both increased in comparison with that of base metal. There are no interface reactions between TiB2 particle and Al matrix. This results supply the evidence that the novel TiB2p reinforced aluminum composites can be well joined with the electron beam welding.  相似文献   

15.
采用阳极溶出法和化学发光法分别对胎儿内耳外淋巴锌、铜、钙含量及铜/锌比值进行定量分析,初步提出人体内耳外淋巴锌、铜、钙含量及比值的正常参考值,并建立了一种测定外淋巴的微量分析方法,此法用量少、灵敏度高、结果可靠,为耳聋的诊治提供参考依据。  相似文献   

16.
湿热导致电子元件封装脱层断裂的分析   总被引:5,自引:0,他引:5  
采用高聚物基复合物作为封装材料的微电子元件易受到湿气的侵入,在焊接过程中,由于温度和湿气的影响,引发电子元件的脱层断裂。对于湿热敏感的高分子材料,当考虑其由湿热的弹性断裂问题时,裂尖和能量释放率可以表示为一个积分表达式。运用有限元法,利用能量释放率的表达式,对不同的裂纹尺寸和封装材料厚度,计算了在不同焊接温度下能量释放率的曲线。对比能量释放率的试验数据,对电子元件的断裂进行了预测。  相似文献   

17.
More high strength steel(HSS) sheets are being applied in the automobile industry to improve safety and fuel efficiency.When HSS is spot welded, the strength of the welded-joint is usually determined by the attributes of the weld nugget.However, it is diffcult to obtain the circular nugget and to establish the relationship between the weld attributes and welding quality because of a large number of variables and experimental uncertainty.In the paper, the numerical analysis model of tensile-shear strength test for HSS spot welds was established.And the critical ellipticity of the elliptical spot weld was determined through finite element analysis.Quantitative relationship between elliptical weld attributes and weld strength was investigated statistically using the Latin hypercube and regression analysis method.The sheet thickness, nugget ellipticity, hardness radio and yield strength have the most influential attributes in affecting welding quality.The research results can be used as a guideline for HSS resistance spot welding design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号