首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
为了保证高速列车在大风环境下路堑中行驶的安全,建立了高速列车—路堑耦合的气动仿真模型,研究了不同风场环境下路堑深度对列车气动性能的影响.研究表明:高速列车的气动特性随着风载荷的突变,气动特性的变化情况复杂.横风环境下,路堑深度的增加有利于降低列车气动力,而在突变风环境下,突变风作用下列车的气动力随风速变化情况更为复杂....  相似文献   

2.
通过数值方法研究了中国帽型瞬态风中高速列车在带风屏障的高架桥上运行时的气动性能,并与恒定横风场下的情况进行了对比分析.结果表明,恒定侧风下高速列车头车周围的流场结构最为复杂,气动载荷变化最显著,而瞬态风作用下高速列车气动性能表现出一定时滞性,列车时速为300 km/h时,风速从13.8 m/s递增到23.46 m/s再递减至13.8 m/s过程中,列车所受到的气动力及气动力矩均发生显著波动,这与稳定横风下列车受到的恒定侧向力明显不同.当列车以时速200~400 km/h运行时,车速每增加50 km/h,列车运行的最大阻力增长9%~10%,其他气动力也随车速稳步增长,气动力矩的增大幅度则随车速的增长有显著加大趋势.  相似文献   

3.
建立长路堑路段高速动车组运行模型,通过数值模拟得到不同工况下动车组气动力,分析强横风环境下路堑结构对动车组气动特性的影响.研究表明:不同路堑结构中气动阻力均随风速和车速增大而增大,深路堑中动车组气动阻力约为浅路堑的2~2.5倍;在3 m深度的浅路堑结构中,动车组所受升力为正值,升力和横向力均随横风风速增大而增大;而在10 m深度的深路堑结构中,动车组所受升力为负值,升力随横风风速增大而增大,横向力随风速增大而减小;分析车速对气动力的影响:在浅路堑结构中,除阻力外,列车车速对其他气动力影响较小;在深路堑中,动车组气动力大小均随车速增大而增大,在相同风速条件下,当风速高于15 m/s时,车速每增大50 km/h,横向力和倾覆力矩增大约50%.  相似文献   

4.
为研究列车进出风屏障段时所受突风效应的影响,以一高速铁路多跨简支梁桥为研究对象,通过风洞试验测试了风屏障在100.0%、43.5%和0透风率情况下车-桥系统的气动特性;基于哑元耦合法,建立了风-车-桥系统分析模型,开展了两种风屏障布置形式(通长和非通长)时风屏障透风率和列车车速对列车动力响应的影响分析. 研究结果表明:设置风屏障时桥上列车的气动特性存在较大差异,尤其列车气动阻力系数在风屏障透风率0比透风率100.0%时减少87%;当风屏障通长布置时,风屏障防风效果显著,随着透风率的减小,列车动力响应大幅减小,其中轮重减载率减小达53%;当风屏障非通长布置情况时,列车在进入和离开风屏障区段时,突风效应对列车的横向加速度和竖向加速度均影响显著,透风率越低,加速度响应变化越剧烈,但对于轮轴横向力和轮重减载率的影响有限;随着车速的提高,突风效应造成的加速度响应总体上增大,呈明显的非线性变化.   相似文献   

5.
顺向斜风对行车安全的影响不容忽略,为考查顺向斜风对运动车辆气动特性的影响,采用移动车辆模型风洞试验装置,针对缩尺比为1/20的车辆和桥梁模型,测试了顺向斜风作用下运动车辆的气动特性,讨论了风速、风向和风屏障等因素对移动车辆气动特性的影响. 结果表明:移动车辆的五分力系数在不同风速时吻合较好;侧向阻力系数、升力系数和点头力矩系数随着合成风偏角的增大而减小;风偏角较小时,风向角对车辆的升力系数有较明显的影响;风屏障使车辆的气动力系数接近0,且明显地改变了车辆气动力系数随风偏角的变化规律;设置风屏障后,车辆阻力系数的变化率受风偏角、车速和风速等条件的影响.   相似文献   

6.
为研究强横风条件下轨道结构的力学特性,采用计算流体力学和有限元联合仿真,对轨道结构的受力和变形进行了分析. 首先采用SOLIDWORKS软件基于CRH380A型高速列车实际外形轮廓建模,然后通过FLUENT计算得到列车的气动特性,再与有限元软件ABAQUS联合仿真建立列车-轨道耦合模型;模型中完整地保留列车表面所受的气动力,解决了流固耦合中列车气动力的传递问题;最后基于建立的耦合模型,针对强横风作用下轨道结构的力学特性进行系统分析. 研究结果表明,当列车运行速度为350 km/h,风速从0变化到15 m/s时,钢轨背风侧处横向位移从0.177 mm增加到2.100 mm,增大了11.86倍,可见强横风条件下,要重点关注钢轨背风侧处横向力学特性;当风速超过15 m/s时,列车运行速度达到250 km/h,钢轨横向位移超出了最大允许值2.000 mm,表明长期的强横风作用将会导致轨道的几何形位发生改变,但此时轮重减载率和脱轨系数并未超出对应限值0.65和0.800. 因此,横风作用下不仅要考虑列车运行安全性指标,也要考虑轨道结构力学指标的变化.   相似文献   

7.
采用谱解法模拟脉动风荷载场,根据风洞试验测得的车辆的空气动力参数,计算出作用在车辆侧面的风荷载;将风荷载加到人-车-路耦合振动系统方程中,建立起考虑其影响的系统耦合振动方程;采用人体加权竖向振动加速度均方根值对车辆乘坐舒适度进行评价,并对模拟风速场及侧向风速大小对车辆乘坐舒适度的影响进行讨论.分析表明:静态风减小了人体、车辆振动加速度的最大值,但对其加速度均方根值没有影响;脉动风作用下人体振动加速度最大值略有变化,但均方根值却增大较多;侧向风荷载场对路面结构的振动几乎没有影响;平整路面下乘坐者出现不舒适感的临界风速为55m/s,A级不平整路面出现不舒适感的临界值为15m/s.  相似文献   

8.
为探讨风屏障的防风效果,对侧风作用下平层公铁桥梁-列车-风屏障系统气动特性进行了风洞试验研究,针对两类风屏障的不同透风率和高度对不同风偏角下桥上中间列车的三分力系数进行测试,研究了风屏障在不同风偏角下的倾覆力矩系数的折减系数.研究结果表明:风屏障在桥面上安装位置不同,对列车气动力特性影响有明显区别;设置风屏障能够有效减小作用在车辆上的三分力系数,给桥上列车提供更有利的行驶环境;风屏障的透风率比高度对列车气动特性的影响要大.无风屏障作用时,侧风下单车上游时列车的倾覆力矩系数最大,受风荷载影响最显著.由于上游车的挡风作用,双车交会时下游列车三分力系数较小,受风屏障和风偏角影响也较小.风偏角在0°~15°时,风屏障透风率和高度对风屏障防风效果影响不明显;风偏角60°≤β≤90°时,设置风屏障A的风速折减率要大于设置风屏障B的,防风效果更佳.  相似文献   

9.
通过采用不可压缩粘性流体的N-S方程和k-ε双方程湍流模型,建立了高速动车组模型,对其在不同横风工况下运行的外流场进行了空气动力学仿真.分析动车组空调表面的压力分布规律,结果表明:列车空调机组所受阻力值由头车至尾车逐渐减小,横风等级增加,阻力值变化不大;空调机组进出口表面负压值及冷凝器进出口压差随横风等级的增加而增大,4、8、12级横风时,空调进出口表面负压总值较无横风时分别提高约30%、174%、561%;随横风等级增加,头车空调所受横向力并无显著变化,而中,尾车空调所受横向力急剧增加,且方向与头车所受横向力相反.4、8、12级横风时,三车空调及导流罩所受横向力总值分别为78、532、2 499 N.  相似文献   

10.
为了保证高速列车在隧道入口有侧风环境中的安全,采取数值分析的方法,建立高速列车进入隧道口存在侧风时的三维可压缩、粘性、非稳态湍流数学模型,研究了当隧道洞口有无侧风和隧道洞口侧风速度变化时隧道内的压力变化以及隧道内活塞风的变化规律.研究结果表明:隧道入口存在侧风时,隧道内测点先出现负压力峰值,后逐渐上升到正压力峰值;随着压缩波的向前传播,波形逐渐分化成两个波峰,并且压缩波越往前传播,第一个波峰逐渐消失,第二个波峰得到加强,其波峰的正压峰值超过无侧风时的最大正压峰值;隧道内速度场出现明显的非对称性,隧道内靠近迎风一侧的环状空间的列车风比背风一侧环状空间的小,背风一侧隧道入口处出现比较明显的涡流,侧风速度越大,最大负压值绝对值越大,隧道内测点的最大正压值、最大负压值均与侧风的速度成正比;当列车速度为350 km/h,侧风速度到达40 m/s时,隧道内活塞风的速度可达21.8 m/s,隧道内的压缩波的最大负压值可达-6 547 Pa.  相似文献   

11.
通过国内外学者对近地边界层、低矮建筑、高层(超高层)建筑、大跨空间结构、桥梁的风速风压所做的实测研究进行了归纳总结,进而对现场实测风速风压的进展情况给出了一些展望。  相似文献   

12.
基于DEA的铁路桥梁风屏障防风效果评价   总被引:1,自引:1,他引:0       下载免费PDF全文
为评价风屏障的防风效果,针对铁路桥梁设置不同高度的风屏障,通过风洞试验测试了单车以及双车交会时的气动力系数.在此基础上,提出用单车的气动力系数衡量车辆风荷载突变效应,以不同轨道位置车辆的风荷载突变量作为评价指标,并采用DEA(数据包络分析)方法评价风屏障的防风效果.研究结果表明:用DEA方法评价铁路桥梁风屏障的防风效果是可行的;当风屏障高度为1.72 m时,防风效果较好.  相似文献   

13.
介绍了风的基本特性、风速模拟的谐波叠加法原理,引入快速傅里叶FFT改进的谐波叠加法.采用改进后的谐波叠加法模拟桅杆结构沿杆身高度不同位置处的多维风速时程,根据风速、风压间的关系将其转化为结构分析所需的风荷载时程.并与相同条件下谐波叠加法模拟风速时程的过程进行了对比,结果表明两种方法的模拟功率谱与目标功率谱均比较吻合,但改进后的谐波叠加法运算效率明显高于谐波叠加法.  相似文献   

14.
风荷载对悬索桥的运营期安全有重要影响.文章利用健康监测系统实测数据,建立了江阴长江公路大桥风特性数据库.在此基础上,一方面针对风速设定报警阈值,从而保证了行车与结构安全,另一方面计算得到紊流强度、阵风系数等风特性,对桥梁设计风荷载参数取值的合理性进行了验证.研究结论为江阴大桥的抗风安全性评价提供了实测依据,同时可为该地区其他工程结构的抗风研究提供参考.  相似文献   

15.
架设在峡谷上的大跨度桥梁,由于桥位处地形复杂,离谷底较高,设计基准风速一般无法通过抗风规范查得,需要进行专门的分析或测试。针对坝陵河大桥的设计基准风速问题,分别通过附近气象台站的数据和专门架设的观测塔的观测数据,通过分析得到了桥位处的设计基准风速。对类似地貌大桥建设设计基准风速的取得具有一定的参考意义。  相似文献   

16.
为研究侧风环境下路堤风速场,建立了有限元模型,对不同高度路基风速场进行了仿真分析;现场实测了侧风环境下的路基风速变化规律,验证了仿真结果的正确性。提出了影响行车安全的计算风速区域。结果表明:路基越高局部风速的增强就越大,上风侧路肩和行车道风速增强最明显,对行车安全影响越大。研究结果提供了侧风环境下高大路堤行车安全的理论基础。  相似文献   

17.
A rigid mode of long-span cantilevered roof was tested in wind tunnel.By analyzing the relation between wind angle and wind pressure coefficient and the relation between wind angle and wind shape factor,we found that 90° is the most disadvantageous wind angle.Furthermore,the fluctuation of wind pressure at the windward edge was reflected by power spectrum density (PSD) and coherence function.The correlation coefficients of measuring points on outer and inner surfaces verifys that the largest lift force was produced at 90°.  相似文献   

18.
为考虑侧向风作用下车辆运动对车-桥系统气动特性的影响,基于研制的移动车辆模型风洞试验系统,针对轨道交通车辆和公路交通车辆,分别采用三车模型和单车模型,测试了不同工况下车辆、桥梁的气动力系数,讨论了车速、风向角、车辆在桥上所处轨道位置以及车辆类型等因素对车辆和桥梁气动特性的影响.研究表明,随着车速的增大和合成风向角的减小,车辆阻力系数和升力系数存在增大的趋势,车速对单车模型气动力系数的影响更显著;车辆在桥上所处轨道位置不同对车辆、桥梁气动力系数的影响均较大,桥梁气动力系数对车速和合成风向角不敏感.  相似文献   

19.
通过对单自由体系的分析,得到风荷载激励和从基底输入的加速度之间的关系。通过对风力发电塔的模态分析,得到简化为广义单自由体系的广义质量和广义刚度,求得风力发电塔塔顶位移的时程曲线,采用Savitzky-Golay平滑算法和差分法求得顶点的加速度和速度时程,以此求得合成后的等效加速度。对直接合成后的等效加速度进行傅里叶变换,采用低通滤波器剔除高频分量,进行傅里叶逆变化后得到最终等效加速度。有限元分析结果表明,在此等效加速度下的结构响应和已知响应吻合一致,从而为风力发电塔的减振试验在振动台上完成成为可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号