首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
信号周期作为交通信号控制的首要参数,在信号配时中起着关键作用,但目前大多数信号配时方法都将重点放在绿信比和相位差的优化,在计算周期时主要仍沿用经典的韦伯斯特(Webster)配时法。因此,对交通干线多路口协调控制中的信号灯配时参数公共周期进行研究。 首先考虑相邻交叉口间距对信号周期的影响,再通过拟合信号周期与车辆延误、通行能力的关系,确定公共周期的可调整范围;同时建立公共周期关于车辆延误、通行能力的双目标模型,在约束条件下利用遗传算法在MATLAB中对其进行求解;最后在微观交通仿真平台VISSIM中搭建以四个交叉口组成的干线系统,对本文所提出的方法进行实验验证。仿真结果表明,该公共周期优化方法相比改进的F-B法,在车辆延误上降低了11.2%,在通行能力上提高了2.1%。  相似文献   

2.
在信号控制交叉口,优先信号的实施不仅要考虑公交车辆的乘客数,同时还与公交车辆的时刻表的偏离程度有关。本文根据公交车辆当前的运行状态在信号配时计算中为公交车辆赋予一定的优先权重,在满足交叉口各进口方向车辆通行需求的同时,以最小的车辆延误代价获取人均延误降低最大化为目标,在交叉口信号配时方案进行优化计算中,为偏离公交出行时刻表的公交车辆分配权重,以确保公交车辆尽可能以绿灯信号通过信号控制交叉口。最后利用MatLab对该算法进行求解计算、验证。  相似文献   

3.
针对城市交通信号控制及公交优先问题,提出了一种交叉口自适应可变相序的多相位控制算法,利用多层BP神经网络实现了公交优先的交通信号多层模糊控制。仿真结果表明,与定时公交优先控制模型相比,模糊神经网络控制器能有效地减少公交车辆延误,具有较强的学习和泛化能力,可用于未来的信号控制系统中。  相似文献   

4.
孙刚  杨敏  顾惠 《交通标准化》2015,1(1):59-65
提出了一种考虑交叉口协调控制的预感应公交信号优先策略,包括两个部分:信号配时优化和协调控制.假设公交车行驶时间已知的情况下,该策略通过按绿信比分配理想时间差和基于公交车站点时空距离转换的改进数解法来实现交叉口的配时优化和协调控制.为了获得该策略的实施效果,以常州市通江南路两相邻交叉口的单个方向为例,设计了四种信号控制情景(无优先、传统优先、预感应优先和预感应协调优先),并利用微观仿真软件VISSIM进行仿真分析.结果表明,四种情景中预感应协调优先策略大大减小了公交在交叉口的延误,提升了公交服务的可靠性,并且对社会车流的干扰最小.  相似文献   

5.
在现有交通资源下,利用交通信号的动态调控缓解交通拥堵是一种行之有效的方式。首先探讨了道路交叉口信号控制的空间和时间优化思路,在时间优化方面提出基于粒子群算法的信号配时优化模型。以昆明市学府路为例,在分析大量交通流数据的基础上,根据三相交通流理论,对交通状态进行划分并提出有针对性的控制策略。将信号配时优化模型应用于学府路3个相邻的关键交叉口。交通仿真和方案试运行结果显示,优化前后同步流状态下交叉口延误平均降低21.0%,车辆排队长度平均降低12.4%;堵塞状态下交叉口延误平均降低32.0%,车辆排队长度平均降低24.9%。这一结果表明该模型在道路交叉口信号配时优化中具有合理性和有效性。  相似文献   

6.
根据信号交叉口理论,在以往信号延误研究的基础上,考虑到公交车辆平均载客数远大于社会车辆平均载客数,以交叉口人总延误最小为系统优化目标,分析并推导了公交优先信号控制优化模型。运用该优化方法能够明显降低交叉口的人均延误,有效保证公交车的准时性,是减少公交车延误的一种可行、有效的方式,为进一步研究交通信号自适应控制方法和建立交通信号控制参数优化的性能指标函数提供了信息。  相似文献   

7.
针对行人密度波动大的路口的交通信号配时优化问题,提出了以行人过街请求为主的交通信号配时,搭建了由视频采集、行人检测和信号配时构成的交通信号控制系统。视频采集单元采集行人的图像数据;行人检测算法是利用背景重构实时构建行人等候区的背景,继而以背景减法检测等候过街的行人;信号配时由等候过街的行人数和等候时长决定。对实际的交通路口进行仿真,结果表明:在行人低峰时段,行人和车辆平均延误分别为5.62 s/veh和15.99 s/ped,在略微增加行人延误基础上,车流的延误大大降低;在行人高峰时段,车辆平均延误为52.13 s/veh,行人平均延误降至8.35 s/ped,优先保证大密度人群顺利通过路口。  相似文献   

8.
根据信号交叉口理论,在以往信号延误研究的基础上,考虑到公交车辆平均载客数远大于社会车辆平均载客数,以交叉口人总延误最小为系统优化目标,分析并推导了公交优先信号控制优化模型.运用该优化方法能够明显降低交叉口的人均延误,有效保证公交车的准时性,是减少公交车延误的一种可行、有效的方式,为进一步研究交通信号自适应控制方法和建立交通信号控制参数优化的性能指标函数提供了信息.  相似文献   

9.
为了充分利用交叉口的时空资源,缓减拥挤,根据单交叉口的实时检测器数据,基于优化模型和仿真模型,以均衡交叉口的交通压力目标,开发了一款交叉口配时方案实时优化与仿真系统,来对配时方案中的周期、绿信比、相序进行动态优化.实测结果表明,与传统定时信号控制方式相比,优化后的交通信号配时控制效果更好,车辆平均延误时间更少.  相似文献   

10.
以自适应公交信号优先控制交叉口为研究对象,提出了全新自适应公交信号优先控制交叉口车辆平均延误计算模型。并运用仿真测试平台,对该信号控制交叉口车辆平均延误进行了仿真分析。仿真结果表明:较常规信号控制方法,自适应公交信号优先配时虽然有助于减少公交行车延误,但是对道路交通系统中的其他车辆通行会造成很大的干扰,对整个交叉口通行能力的影响不一定是正面的。车辆平均延误分析对公交优先策略的具体实行方式、城市交叉口信号控制算法优化及其服务水平的提升具有良好的指导作用和借鉴意义。  相似文献   

11.
公交信号优先控制策略研究综述   总被引:3,自引:0,他引:3  
马万经  杨晓光 《城市交通》2010,8(6):70-78,16
公交信号优先是提高公交系统运行速度和可靠性的重要手段。回顾公交信号优先控制40多年的研究成果,以总结该领域的总体研究脉络。对被动优先、主动优先、实时优先以及与不同设施相结合的信号优先控制策略进行了综述分析。研究表明,公交信号优先控制策略的发展历程是:控制的实时性逐步提高,优化要素的考虑逐渐全面,控制对象日益扩大,控制策略逐步系统化、适用性逐步增强。最后指出,公交信号优先控制多目标平衡、控制策略的协调与网络优先控制,以及控制与调度策略的协调优化是后续研究的重点,而公交车辆行程时间预测以及如何应对预测偏差带来的影响仍然是信号优先控制中的关键问题。  相似文献   

12.
Analytical Approach to Evaluating Transit Signal Priority   总被引:1,自引:0,他引:1  
Successful deployment of transit signal priority (TSP) systems requires thorough laboratory evaluation before field implementation. Traffic simulation is a powerful tool in this regard; however, it requires tremendous efforts toward network coding, data collection, and model calibration. Besides, simulation models tend to be project specific, and the models developed for one project are often discarded upon the completion of that project. In this paper, it is shown that the impacts of two fundamental TSP strategies (early green and extended green) can be evaluated using an analytical approach. The impacts of the above two strategies on both the prioritized and the nonprioritized approaches are illustrated using graphical as well as analytical methods. A simulation study is then conducted for comparison analyses, followed by a statistical approach for the test of generality.  相似文献   

13.
城市快速路高峰时段已经呈现出常态性拥堵,对快速路主线拥堵进行疏导尤为必要.本文通过在主线和入口匝道进行三级交通检测判别,设计了多级联动的信号控制流程与实现方式,构建了不同拥堵程度下的分级响应控制策略,基于瓶颈点通行能力最大化下的实时信号控制算法及最大排队长度限制下的实时信号控制算法,建立了主线及匝道车道开关闭、汇合处信号灯控制、主线动态限速、交通信息诱导等于一体的快速路级联信号控制方法.仿真分析结果表明,在主线不同拥堵程度下采取的级联信号控制方法,可以有效提升快速路主线平均车速,并未导致匝道排队的恶化,局部路网平均延误均有明显降低.  相似文献   

14.
为优化区域交通网络中各信号控制器的配时方案,利用递推最小二乘算法(RLS)和同时扰动随机近似(SPSA)算法,由检测器流量估计DynaCHINA动态网络交通仿真与分析系统的动态OD矩阵,输入并标定各路段的速度-密度模型参数和饱和流量,获得网络状态的准确估计,包括各路段的速度、密度、流量、队列长度等;在此基础上,利用SPSA算法优化各信号控制器配时参数,包括各信号控制器的周期、相位差和绿信比,使得网络中车辆的平均旅行延误、队列长度、或交叉口通过量等指标最优. 针对实际路网的测试表明,本文的参数标定方法可以获得准确的检测器流量估计,结果明显优于Ashok K的动态OD矩阵与检测器流量估计方法;与现有的基于Synchro信号配时优化软件获得的结果相比较,该方法可较大幅度缩短车辆在路网中的平均旅行延误,并可推广应用于更复杂的区域路网的信号控制参数优化等场合.  相似文献   

15.
为研究最小方差控制中的最优输入信号设计问题,推导了最小方差控制器与闭环反馈结构中对象模型、噪声模型之间的关系.基于闭环反馈系统中频响函数估计的渐近分析,考虑系统对象模型、噪声模型和控制器三者之间的摄动性.分别采用输出端误差平方的均值、输入端误差平方的均值和输出端估计值平方的均值作为评价性能指标函数,推导三种情况下最优输...  相似文献   

16.
公交信号优先系统在投入使用以前要经过严格的测试分析。交通仿真虽然在这方面是一个很好的工具,但它往往需要大量的路网输入,数据采集以及模型校准等工作。而且,交通仿真模型的开发都是根据不同的项目“量身定做”,项目完成即被丢弃,很难再重复使用到其它项目上去。本文探讨用交叉口容量分析的方法来评价公交信号优先对公交车以及其它车辆的影响。就目前最常用的两种公交信号优先方法,即“绿信号先导”和“绿信号延长”展开分析,用大家熟知的韦伯思特的图形方法来诠释这两种方法对公交车辆和其它车辆交叉口延迟的影响.采用交通仿真对分析结果进行的统计验证表明,用分析方法得到的结论是可靠的。  相似文献   

17.
基于城市路网交通间断流特性,本文将微观层面的信号交叉口延误计算方法引入宏观层面的平衡网络信号优化设计问题,构建了一个中观层面的城市路网交叉口信号优化设计双层规划模型,设计了基于遗传操作的优化算法。通过路网算例对模型及算法进行测试,并通过与微观、宏观层面的两种信号优化配时方法进行比较,验证所提出模型的优越性。  相似文献   

18.
蚁群算法是一种求解组合优化问题的新型通用启发式方法,城市公交线网模型优化是一个复杂的非线性组合优化问题.本文将蚁群算法用于城市公交线网模型优化问题的研究,建立了城市公交线网的数学模型,该模型以乘客公交总出行时间最短与公交运营投入最小为目标函数,并在此基础上设计了相应的算法.算例证明了该算法在城市公交线网优化中应用的可行性和有效性.  相似文献   

19.
传统的干道协调系统中,干道信号控制方案间切换将会产生车流中断或扰动,无论是多时段控制、感应控制或自适应控制都存在这样的问题。针对传统过渡方法不是建立在优化过渡时期评价指标的基础上以及为了提高城市干道信号控制过渡时期车流的运行性能,建立了基于干道总延误最小的非线性约束过渡模型。通过同步式调整干道各交叉口的过渡周期长度与相位差来优化干道系统过渡时期性能,考虑车流离散因素对干道延误性能的影响,并通过改进的遗传算法求解。最后采用Visual C++调用仿真软件VISSIM内部COM接口进行案例分析。结果表明,与传统过渡方法两周期、三周期、减法(Subtract)、短路径(Shortway) 相比,所提出的过渡方法使道路延误性能平均提高了19.6%, 15.2%, 10.5%, 9.8%。该方法在大范围的交通和几何条件下的表现具有一定优势,在保证干道过渡延误性能的同时也给干道提供了最优的绿波带。  相似文献   

20.
干线交通控制系统能有效减少机动车运行延误. 本文以系统延误最小和绿波带宽最大为目标,构建了基于系统周期和相位差最优的干线交通控制模型,以双向有隔离的北京城市主干路——皂君庙路—大柳树路(含4个信控交叉口)为实例,提出了两种线控优化方案,通过VISSIM仿真对该交叉口及其所在路段优化前后的交通状况进行了比较. 结果表明:在北京市这类行人流量较大、交叉口布局紧凑的道路条件下,采用重叠相位能更好地优化线控系统;应用本文提出的控制策略对该路段进行线控优化后,交叉口总信控延误减小了59.6%,主线上的南向北和北向南平均行程速度分别提高了140.0%和51.7%,交通运行效率显著提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号