首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
采用主动控制技术提高铁路车辆横向平稳性   总被引:3,自引:1,他引:3  
建立了横向主动悬挂的17个自由度计算模型,将主动控制铁路车辆的横向平稳性问题,归结为一性二次型最优问题(LQ问题)求解。计算分析了铁路车辆在采用主动悬挂后横向平稳性改善的情况。计算结果表明,与被动悬挂相比,主动悬挂使车体横向加速度和轮轨作用力均方根值分别降低60%和20%左右。  相似文献   

2.
高速列车横向半主动悬挂系统模糊控制   总被引:3,自引:0,他引:3  
为了抑制由高速车体摇头引起的车体横向振动,构造了高速列车横向半主动悬挂系统模糊控制结构,采用模糊控制策略,以减振器的实际阻尼力和车体、构架的横向振动加速度为反馈输入,对车体前后横向悬挂系统的可调减振器进行双闭环反馈独立控制.以美国六级轨道谱为输入,在列车运行速度为270 km·h-1时,结合表征列车悬挂系统横向振动特征的17自由度动力学模型,对半主动悬挂机车和被动悬挂机车的横向振动、摇头振动进行计算.计算结果表明:采用半主动悬挂的高速车体平稳性改善了12.54%,摇头振动幅值减少了35.00%,横向振动幅值减少了48.45%,在车体固有频率(1~6 Hz)附近,车体横向振动、摇头振动抑制达到50%.可见,该控制结构和控制策略能够明显抑制车体横向振动.  相似文献   

3.
为提高高速客车乘坐的舒适性,以悬挂系统静挠度为研究对象,讨论了二系和一系悬挂静挠度比与总静挠度的关系.根据振动理论及多体系统动力学原理,研究了不同静挠度比下二自由度车轮荷重系统受迫振动的特点,建立了高速客车分析模型,分析了不同速度下一系和二系静挠度分配对高速车辆运行平稳性的影响.研究结果表明:对于车轮荷重系统,在低于4 Hz的频段中,车体加速度随挠度比的增大而减小,在高于4 Hz的频段,挠度比为1.0和2.0时,车体加速度较小;随着静挠度比增大,构架振动加剧,车体横向平稳性略有降低,频率在2~10 Hz之间车体垂向振动明显变大,静挠度比为0.5和8.0时的垂向平稳性指标比静挠度比为2.0时的计算结果分别高出1.5%和6.0%.   相似文献   

4.
为了考虑车体的弹性振动,将车体等效成欧拉伯努利梁,建立了车体与设备垂向耦合振动模型,研究了车下设备刚性悬挂与弹性悬挂对车体振动幅频特性的影响。基于模态叠加法原理建立了考虑车体弹性振动和车下设备的高速动车组三维刚柔耦合动力学模型,分析了车下设备悬挂方式、重心偏载与弹性悬挂参数对车体振动响应的影响规律。采用欧拉伯努利梁模型的数值分析结果表明:基于动力吸振器原理,当车下设备采用合理的弹性悬挂参数时能够有效抑制车体的弹性振动,并提高车体的垂向弯曲频率。采用三维刚柔耦合动力学模型仿真结果表明:车辆运行速度越高弹性悬挂的优点越明显,车下设备横向偏载主要影响车体的横向振动特性,纵向偏载主要影响车体的垂向振动特性;当车下设备的悬挂频率接近车体的垂向弯曲频率时能够降低车体的整体振动水平,当车下设备的悬挂频率低于车体的垂向弯曲频率时,提高车下设备弹性悬挂系统的阻尼能够在一定程度上抑制车体的弹性振动。  相似文献   

5.
车辆主动悬挂最优预见控制模型   总被引:4,自引:1,他引:3  
以复杂多自由度的车辆系统设计模型代替传统的简化模型,建立了主动悬挂控制车辆系统模型,设计了最优预见控制器,研究了车体的浮沉、点头、侧滚3种运动状态在加控制和未加控制时的路面激扰响应。仿真计算结果表明在最优控制下车体的浮沉响应降低了27%,点头响应降低了30%,侧滚响应降低了30%;在预见控制二次加权矩阵的作用下,车体的浮沉响应降低了54%,点头响应降低了50%,侧滚响应降低了45%;根据预见控制的提前预见可适时响应的特点,系统可按设定目标预见步数提前作出响应,由此验证了最优预见控制在复杂多自由度的车辆主动悬挂设计模型中应用的可行性和有效性。  相似文献   

6.
高速列车整备车体谐振分析   总被引:2,自引:1,他引:1  
针对高速列车车体与设备和悬挂之间的谐振问题,利用ANSYS对某高速列车整备车体及其车下吊挂设备进行仿真分析,结合该车体在线路试验中测得的悬挂系统的振动加速度,以此来识别车体和悬挂系统的模态参数,进而判断车体和车下设备及悬挂之间是否有谐振产生.针对该车车体仿真计算结果,为了提高车体整备状态一阶垂弯频率,质量较大的车下设备...  相似文献   

7.
为研究车体和车下设备之间的耦合振动关系,建立了高速动车组的车辆刚柔耦合系统动力学模型;考虑车体弹性模态振动,采用扫频激励法,仿真分析设备质量、刚度、阻尼和安装位置对系统振动的影响;研究了不同参数相互作用下的振动特性.研究结果表明:与设备采用固接方式相比,弹性联接可显著降低车体弹性振动,设备质量越大且越靠近车体中部安装,对抑制弹性振动效用越显著;设备质量小于1.0 t或者距离车体中心6 m以上时,降低弹性振动的效果较小,阻尼比为5%~30%时,效果较好.利用机车车辆滚动振动试验台进行设备悬挂振动特性测试,表明设备采用弹性联接可显著改善高速动车组的乘坐平稳性,运行速度等级越高,效果越显著,最大可改善约15%.   相似文献   

8.
磁浮列车静悬浮车轨耦合振动对比分析   总被引:1,自引:1,他引:0  
为研究二系悬挂中置与端置的两种三悬浮架低速磁浮列车的车轨耦合振动特性,依据牛顿第二定律建立了其垂向车轨耦合动力学模型. 首先通过动力学方程分别分析了两种磁浮列车车体和悬浮架之间的耦合关系,然后研究了两种磁浮列车悬浮架均存在0.09° 的初始角位移时的动力学特性,最后研究了两种磁浮列车中二系悬挂对悬浮架作功的差异. 研究结果表明:与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,车体与悬浮架之间的耦合关系更少;当两种磁浮列车悬浮架均存在0.09° 的初始角位移时,采用二系悬挂中置的磁浮列车与采用二系悬挂端置的磁浮列车相比,前者具有更小的车体位移、车体垂向振动加速度、轨道梁振动位移和悬浮间隙波动;以上4个参数前者最大值分别为0.005 mm、0.004 m/s2、0.004 mm和0.005 mm;而后者最大值分别为0.023 mm、0.02 m/s2、0.021 mm和0.02 mm;与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,其二系空气弹簧对悬浮架作功更小,仅为前者的50%.   相似文献   

9.
为了减小高速动车组车体刚性与弹性振动, 提出了一种基于二系垂向作动器与车体压电作动器的高速动车组车体振动主动控制方法; 基于某型高速动车组, 设计了一种在车辆二系安装垂向作动器, 在车体底架布置压电作动器, 运用H鲁棒最优控制器进行车辆协调控制的主动减振方法; 建立了基于车辆动力学参数的刚柔耦合减振力学模型, 采用H2及H准则优化压电作动器与压电传感器布置位置, 运用鲁棒最优控制方法设计了H反馈控制器; 利用MATLAB仿真了减振装置与主动控制方法对车辆动力学性能的影响, 比较了被动悬挂车辆、仅安装二系垂向作动器车辆与采用主动控制车辆的动力学性能差异。研究结果表明: 压电作动器与压电传感器布置在距车体左端距离为7.15、12.25、17.35m处车体一阶及二阶弹性模态归一化H2及H范数最大, 可以作为压电作动器与传感器的布置位置; 基于二系垂向作动器与车体压电作动器的鲁棒最优控制方法能够有效地抑制车体的振动, 一阶垂弯振动频率处车体中部和转向架上方的加速度功率谱分别减小为被动悬挂车辆的5%、10%;速度越大, 振动加速度抑制效果越明显, 当车辆的运行速度为200km·h-1时, 车体振动加速度均方根减小10%, 当车辆的运行速度为350km·h-1时, 车体振动加速度均方根减小18%;相对于被动悬挂, 二系垂向作动器输出力功率谱在车体浮沉与点头振动频率处的量级为106 N2·Hz-1, 对车体刚性振动有较大抑制作用, 压电作动器电压功率谱在车体一阶垂弯振动频率处达到峰值4 000V2·Hz-1, 对车体弹性振动有较大抑制作用。   相似文献   

10.
针对时速160 km动车组在单线隧道内列尾横向晃动问题,提出列尾气流涡脱效应引起车体涡激振动而导致列尾横向晃动的机理,研究了车辆悬挂参数改进等相关抑制措施;根据某动力车结构参数,建立车辆横向动力学模型,结合半经验非线性涡激振子模型,实现涡激振动时车辆流固耦合横向动力学计算。计算结果表明:单线隧道内动车组列尾较大的横向涡激力以及涡激频率与车体蛇行频率共振是引起晃车的主要原因;减小横向涡激力、提高车辆蛇行运动稳定性是减小晃车幅值的有效措施;针对该动力车,需避免较低等效锥度的轮轨接触,以防车辆一次蛇行导致涡激振动加剧;当转向架抗蛇行减振器阻尼由800 kN·s·m-1减小到400 kN·s·m-1,涡激共振时车体后端横向振动加速度幅值减小40%;车辆二系横向悬挂采用天棚阻尼半主动控制时,可以有效减小涡激共振区车体横向振动幅值,并能兼顾车体前后端横向平稳性。   相似文献   

11.
为了研究宽频带的隔振问题,以使系统具有较好的隔振效果,提出将电磁悬浮隔振与机械隔振相结合的复合隔振系统. 首先,对所设计的隔振系统进行动力学建模,分析线性化后的模型控制特性;其次,针对系统振动控制问题,提出基于自抗扰技术的控制器设计方案,并通过仿真实现了复合隔振系统的自抗扰控制;最后,在复合隔振平台上验证了该控制方案的可行性. 研究结果表明:在0~10 Hz频段控制系统能实现较好的低频跟随效果,在10~100 Hz频段幅值衰减逐渐增大,在100~300 Hz频段的隔振效果超过?14.9 dB. 本文所提出的控制方案为复合隔振系统控制提供了一种新思路.   相似文献   

12.
为提高车辆的乘坐舒适性并兼具回收振动能量的功能,对试制PMSM-滚珠丝杠式馈能作动器进行了力学特性测试,对库仑阻尼和作动器等效惯性质量进行识别,根据识别结果设计了馈能型主动悬架非线性控制器;结合电磁动力学建模、电气参数校核,采用分级变压充电试验方法对作动器样机进行三角波及正弦波位移输入下的力学特性测试,利用参数拟合使建模仿真力学特性曲线逼近实测曲线,完成库仑阻尼识别和等效惯性质量验证;对含有库仑阻尼及作动器等效惯性质量的主动悬架力学模型中的非线性项进行前馈反馈线性化处理,并对簧载质量/非簧载质量加速度项正则化处理,在此基础上根据作动器最大输出力设计了双约束H2/H控制器;利用数值仿真对被动悬架、理想主动悬架、常规H2/H控制主动悬架和双约束H2/H控制主动悬架进行悬架综合性能对比验证及馈能性能分析。分析结果表明:双约束H2/H控制主动悬架的簧载质量加速度均方根和综合性能指标较被动悬架分别降低47.05%和51.67%,仅比理想主动悬架分别差1.86%和1.34%,且比常规H2/H控制主动悬架分别优19.28%和11.21%;库仑阻尼和电机定子电阻分别消耗掉了作动器总吸收功率的18.99%和20.19%,相比之下,流向蓄电池的回收平均功率高达60.82%。   相似文献   

13.
为了减少车辆主动悬挂对外部能源的消耗,设计了自供能量主动悬挂系统,建立了车辆半车简化横向悬挂动力学模型,设计了LQG控制器,并利用随机振动理论分析了系统能量平衡存在的条件,采用Matlab/Simulink对系统的运行效果进行了仿真。仿真分析结果表明:自供能量主动悬挂系统比半主动和被动悬挂拥有更好的隔振效果,且当直流电机作动器的等效阻尼系数大于规定值时,系统在实现主动减振控制的同时还能够反馈能量。  相似文献   

14.
以车体低阶弹性振动、刚体振动和设备有源振动为输入, 提出了一种能够快速、简便确定弹性设备悬挂刚度的方法;在充分考虑吊挂设备各个方向上可能出现耦合振动、设备安装间隙、允许最大振动位移等因素的前提下, 推导了任意悬挂方式吊挂设备的刚体振动频率计算公式;给出了车下弹性吊挂设备悬挂刚度的选取方法与分析流程;以某动车组为例, 建立了车体与动力包的耦合振动分析模型, 计算得到了动力包的点头、摇头、浮沉、侧滚等刚体振动频率和三向悬挂刚度的取值范围, 并对比了动力包悬挂刚度理论计算结果与有限元结果。研究结果表明:在已知车体或吊挂设备基本参数的前提下, 采用提出的方法无需通过复杂的动力学建模分析即可计算出其点头、摇头、浮沉、侧滚等刚体振动频率, 与有限元计算结果相比, 刚体振动频率的最大相对误差为6.88%;计算所得动力包刚体振动频率与车体对应振动频率的比值均有效避开了耦合区间[0.750, 1.414], 因此, 采用提出的方法可快速、准确地确定吊挂设备的刚度范围, 从而避免设备与车体之间的共振。   相似文献   

15.
为解决磁悬浮多跨转子不对中振动检测问题,首先,建立磁悬浮转子系统动力学模型及联轴器不对中模型;其次,基于多跨转子力学模型模拟转子不对中振动状态,并采用二阶广义积分-锁频环(second order generalized integrator-frequency locked loop,SOGI-FLL)对振动信号进行转速辨识;然后,将转速辨识信息输入至SOGI进行转速同频陷波,进而利用带预滤波器的SOGI-FLL (SOGI-FLL with prefilter,SOGI-FLL-WPF)对陷波后的信号进行磁悬浮多跨转子不对中振动检测;最后,通过磁悬浮多跨转子定速和升速状态下的仿真计算,验证了本文提出多跨转子不对中振动检测方法的可行性. 实验结果表明:由转子不对中引起的转速二倍频振动信号可被快速辨识出幅值和频率,可为磁悬浮多跨设备的应用奠定基础.   相似文献   

16.
为探究小半径曲线钢轨波磨与车内振动噪声的关系,以高铁站区线路中出现的钢轨波磨为对象,开展了实车试验与轨面平直度现场测试;采用同步压缩小波变换提取了车厢内部振动与噪声信号的时频特征,并引入全局小波功率谱和小波能量比对信号进行量化分析;建立了波磨严重程度与车厢内振动噪声水平的关联关系,对比了车体与走行部构件之间动力响应的差异,探讨了波磨所在曲线半径对车内振动噪声的影响。研究结果表明:在小半径曲线地段,车厢内振动与噪声信号的优势频率为500~550 Hz,与钢轨波磨引起的轮轨冲击频率一致,且该频段的能量在波磨严重区段愈加显著;轴箱与转向架构架振动信号在500~550 Hz频带也存在能量峰值,而轴箱振动信号中出现的330、1 046 Hz等峰值频率被一系悬挂有效过滤,使得构架振动响应中未见此频率成分;在车厢内采集的各项信号中,车体垂向振动响应与钢轨波磨沿线路里程的分布特征最为相关,而车内噪声、纵/横向振动、侧滚运动的相关性次之,摇头运动的相关性最低;与直线和大半径曲线相比,小半径曲线区段的车体振动与噪声水平受钢轨波磨的影响更为显著。  相似文献   

17.
针对主动悬架减振性能和馈能特性在不同等级路面适应性较差的问题,建立了非线性电磁主动悬架模型; 考虑车辆在行驶过程中悬架簧上质量存在不确定性,提出了一种主动悬架自适应滑模控制器; 基于不同路面下悬架动力学响应数据,采用自适应模糊神经网络算法识别路面等级,确定控制器目标系数,实现了主动悬架安全性和舒适性之间的协调; 研究了电磁主动悬架馈能特性及其切换控制策略,在此基础上,考虑电磁主动悬架安全性、舒适性和节能性的矛盾关系,采用多目标粒子群优化(MOPSO),以悬架动力学性能和馈能特性为设计目标综合优化控制器和悬架结构参数,并通过模糊集理论对多目标优化后的Pareto解集进行最优解选取。研究结果表明:模糊神经网络对不同等级路面下非线性电磁主动悬架的最大识别误差能够控制在10%以内,满足识别准确性要求; 在C级路面条件下,优化后的主动悬架与传统被动悬架相比,簧上质量振动加速度减小了35.3%,轮胎动行程增大了7.7%,但可以控制在10%的安全范围内; 与原主动悬架相比,优化后悬架簧上质量振动加速度减小了10.5%,馈能效率增大了1.7%,优化后自适应滑模控制器能够更好地协调悬架馈能特性和减振特性; 建立的非线性电磁主动悬架模型可实现不同路面等级下悬架系统安全性、舒适性和节能性的综合最优。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号