首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究桥上纵连板式无砟轨道无缝道岔的力学特性,根据桥上纵连板式无砟轨道无缝道岔的特点,采用有限元方法,建立桥上纵连板式无砟轨道无缝道岔的纵-横-垂向空间耦合计算模型.以铺设在桥上的客运专线18号无砟轨道无缝单渡线为例,研究轨道板/底座板伸缩刚度、摩擦板长度、桥梁形式对桥上纵连板式无砟轨道无缝道岔力学特性的影响.结果表明:减小轨道板/底座板伸缩刚度,对轨道结构变形影响较小,但下部结构受力明显降低,最大降幅约为90%;增加摩擦板长度,有利于控制桥上无缝道岔的受力与变形,可减小下部结构受力,当摩擦板长度由50 m增至100 m时,端刺受力可减小约18%;桥上纵连板式无砟轨道无缝道岔宜铺设在连续梁上.  相似文献   

2.
大跨桥上纵连板式轨道受压稳定性   总被引:3,自引:0,他引:3  
为探讨大跨桥上纵连板式轨道的受压稳定措施,根据大跨桥上纵连板式轨道的结构和纵向受力特点,以某跨径为94 m 168 m 84 m的预应力混凝土连续刚构桥为例,建立了轨道板-桥梁-墩台的有限元模型,并确定纵连板和底座板最不利段.将列车荷载作用下纵连板和底座板向上的挠曲作为初始弯曲缺陷,按照第二类稳定问题对纵连板式轨道的受压稳定性进行了分析.结果表明,对大跨桥上的纵连板式无砟轨道,在列车荷载和温度压力的共同作用下,纵连板和底座板可能发生竖向失稳,可设置"倒L"型双向挡块以增加稳定性;当纵连板和底座板的最大允许温升为30℃时,该桥"倒L"型双向挡块的间距不宜大于16.7 m.  相似文献   

3.
为实现桥上Ⅱ型板式无砟轨道无缝线路纵向受力与变形分析的智能化,考虑了桥梁结构、轨道板以及钢轨之间的相互作用,利用有限元法建立了多跨简支梁和大跨度连续梁桥上CRTSⅡ型板式无砟轨道无缝线路精细化有限元模型;采用C#语言对ANSYS进行二次开发,研发了集参数输入、有限元建模、荷载施加、自动计算、数据提取及数据智能处理于一体的纵向力智能分析系统。通过与已有文献对比,验证了智能分析系统的通用性和可靠性,可为桥上Ⅱ型板式无砟轨道无缝线路的设计提供参考。  相似文献   

4.
考虑了无缝线路、扣件、无砟轨道和长大桥梁等多个结构之间的相互作用关系,创建了市域铁路长大桥上无砟轨道无缝线路的静力学仿真模型.应用所建立的仿真模型,计算分析不同荷载组合方式条件下轨道和桥梁结构的力学特性,为市域铁路长大桥上无缝线路计算和检算的荷载取值方法提供科学的建议.结果表明:相对于单独考虑各种荷载,同时考虑温度变化...  相似文献   

5.
针对采取维修措施后纵连板式无砟轨道在高温荷载下的受力变形问题,考虑轨道板与砂浆层间界面黏结应力-位移非线性本构关系、植筋结构应力-滑移非线性本构关系,建立了纵连板式无砟轨道力学行为分析有限元模型,并对其施加非线性高温荷载,对比分析了注胶、植筋与2种措施共用对纵连板式无砟轨道受力变形与结构损伤的影响规律。研究结果表明:对于轨道板两侧存在0.2 m层间离缝、一宽窄接缝存在破损的基本工况,注胶、植筋与2种措施共用情况下邻近破损接缝的轨道板端部层间离缝最大值分别为未采取维修措施时的63%、20%和18%,破损接缝混凝土受压损伤最大值分别为未采取维修措施时的51.0%、6.8%和5.5%;对于宽窄接缝结构状态较差的纵连板式无砟轨道,植筋措施的维护效果远好于注胶措施,而2种措施共用的效果更佳;注胶措施对纵连板式无砟轨道端部垂向位移、层间损伤和宽窄接缝受压损伤的限制作用随注胶深度的增加而增强;仅采用注胶措施情况下,若要达到2种措施共用情况下邻近破损接缝的轨道板端部层间损伤的幅值范围,注胶板块数需不小于2,且双侧注胶深度均需不小于0.9 m,建议在仅采取注胶措施时,充分保证注胶维修面积。  相似文献   

6.
在我国铁路的建设过程中,高架桥梁所占的比例越来越大。桥梁的活动支座处存在一定数量的摩阻力,在温度和车辆荷载的作用下,可能会使轨道和桥梁结构的受力与变形增大。由于现有的铁路设计规范中对活动支座处的摩阻力并没有特殊的规定,因此在进行常规的理论仿真分析时,一般不考虑活动支座处摩阻力的影响,这种算法上的简化可能会使温度和车辆荷载作用下的计算结果产生比较大的偏差。通过建立考虑活动支座摩阻力和不考虑活动支座摩阻力的两种铺设CRTSⅠ型板式无砟轨道的桥上无缝线路精细化空间耦合仿真模型,研究活动支座处摩阻力对梁轨相互作用的影响,并对今后分析桥上无砟轨道无缝线路结构时是否考虑活动支座处的摩阻力提供建议和参考依据。  相似文献   

7.
针对桥上有砟轨道,利用耦合动力学理论,建立了车辆-有砟轨道-桥梁系统动力分析模型,编制了仿真计算程序.通过与既有理论分析结果和软件计算结果的对比,对本文所建模型的正确性进行了验证.该模型可用于研究车辆、轨道和桥梁结构的动力相互作用,可用于对车辆运行的舒适性以及桥上有砟轨道结构的动力特性进行预测评价.  相似文献   

8.
为研究适应连续梁桥上单元板式无砟轨道的最大温度跨度,采用有限元方法建立了线-板-桥-墩一体化计算模型,分析了在不同轨温变化幅度下,桥梁伸缩、墩顶水平位移及列车制动荷载对桥上单元板式无砟轨道无缝线路温度跨度限值的影响.研究结果表明:温度跨度限值随轨温变化幅度的增加而降低;为保证钢轨强度、横向压弯变形及钢轨与轨道板相对位移等满足要求,当考虑桥梁伸缩时,以轨温变化40 ℃为例,其适应的温度跨度限值为271 m;随着墩顶水平位移的增加,桥梁温度跨度限值显著降低,当墩顶位移为30 mm时,温度跨度为237 m,当高墩桥梁墩顶位移超过30 mm时,应结合实际墩顶位移计算温度跨度限值;制动荷载下线路坡度对温度跨度限值影响较小,当线路坡度为20‰时,桥梁温度跨度限值为258 m.   相似文献   

9.
为了研究列车疲劳荷载作用下CRTSⅢ型板式无砟轨道结构横向受力性能,采用实际工程施工现场的材料及施工工艺,利用足尺模型,切割制作6个单承轨台或双承轨台的板式无砟轨道试件,进行橡胶板模拟路基上板式无砟轨道结构的横向弯曲疲劳试验,得出列车疲劳荷载引起的横向弯矩作用下板式轨道试件的应力、变形分布规律及疲劳损伤的发展形态.试验结果表明,在15.0~255.0 kN和42.5~425.0 kN疲劳荷载作用下,模拟路基上单承轨台和双承轨台的试件板中位置轨道板上表面先出现纵向裂缝,随后轨道板横向预应力筋锚固端出现由锚头向轨道板上表面的劈裂裂缝,累计疲劳500万次后,三点弯曲模式下轨道板-充填层复合板试件的自密实混凝土开裂荷载和层间滑移荷载分别减小20%~30%和25%以上,疲劳损伤、层间离缝对轨道板与充填层的协同工作性能有不利影响.   相似文献   

10.
为研究土质路基上纵连板式无砟轨道动力性能,建立了列车-路基上纵连板式无砟轨道耦合动力学模型.模型中,将纵连板式无砟轨道及路基视为空间层状粘弹性体,采用连续体建模法,建立其运动微分方程并用Galerk in法进行离散变换;分析了CRH2-300动车组以300、350 km/h速度运行时,路基上纵连板式无砟轨道的动力特性,并与京-津城际铁路实测结果比较.结果表明:水泥沥青砂浆最大动应力为46.8~50.5 kPa,小于砂浆层设计指标值15 MPa;动变形随深度衰减较慢,动应力随深度衰减较快;单个转向架产生动应力的影响范围沿线路纵向约为5 m、横向约为3.25 m;轨道板、水泥沥青砂浆层和支承层沿深度方向的变形分布差别不大.  相似文献   

11.
为研究横向和竖向温度梯度对桥上CRTSⅡ型板式无砟轨道纵向力学特性的影响,以梁-板-轨相互作用原理为基础,建立大跨度连续梁桥上 CRTSⅡ型板式无砟轨道无缝线路空间精细化有限元模型,计算了轨道板竖向温度梯度和阴阳面横向温度梯度荷载作用下各轨道和桥梁结构的纵向力和位移. 结果表明:在其他温度荷载相同的情况下,轨道板竖向温度梯度对钢轨的纵向力和位移影响不大;当阴阳面横向温度差为10 ℃时,连续梁上背阴侧钢轨最大的纵向力是向阳侧的1.4倍,背阴侧桥墩最大的纵向力是向阳侧的3.5倍;在横向温度梯度作用下,钢轨纵向附加力由梁体伸缩和扭曲变形共同作用产生,横向温度梯度越大,背阴侧钢轨纵向力、位移最大值越大,向阳侧钢轨纵向力、位移最大值越小;横向和竖向温度梯度的存在不利于轨道和桥梁结构安全使用,因此,在高温差地区设计东西走向的大跨度桥上无缝线路需重点关注钢轨、轨道板和桥梁墩顶受力,并且对无缝线路的横向稳定性进行验算.   相似文献   

12.
考虑桥梁伸缩的纵连底座板配筋计算方法   总被引:1,自引:0,他引:1  
为优化桥上CRTSⅡ型板式无砟轨道纵连底座板配筋设计,推导了纵连底座板刚度折减计算方法.分析了纵连底座板上的纵向力,提出其配筋设计应考虑伸缩力,并确定了伸缩力的组合系数.基于极限状态法,建立了考虑伸缩力的纵连底座板配筋计算方法,并给出了大跨度连续梁桥纵连底座板配筋的算例.研究结果表明:考虑伸缩力的纵连底座板配筋计算方法对提高其耐久性更有利,特别是对大跨度连续梁桥.   相似文献   

13.
为了降低高速铁路桥上结构的振动与噪声水平,以我国CRH2型高速车辆和32 m跨度高速铁路简支箱梁及CRTS I型板式无砟轨道为对象,建立高速车辆-无砟轨道-桥梁耦合振动分析模型,分析比较了不同行车速度下无砟轨道减振层刚度对车轨桥系统动力响应的影响,为桥上减振型板式轨道动力学参数设计提供参考。计算结果表明,桥上采用减振型板式轨道可显著降低轨道板垂向振动加速度,在本文计算条件下其最大加速度幅值较无减振层时减小了57%以上;减振型板式轨道能稍微降低轮轨动力作用,可减小简支箱梁垂向振动加速度20%左右;较低的减振层刚度增大了轨道板垂向振动位移,不利于高速行车安全,而过大的减振层刚度不能有效降低轨道结构振动,综合考虑后建议桥上减振型板式轨道弹性垫层刚度在100~200 MN/m3之间选取。  相似文献   

14.
针对中国自主研发的CRTSⅢ型板式无砟轨道在运营阶段的受力变形问题, 以梁-板-轨相互作用原理为基础, 考虑钢轨、轨道板、自密实混凝土层及底座板等细部结构的空间尺寸与力学属性, 运用有限元法建立了高速铁路桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型; 计算了列车荷载作用下轨道及桥梁结构的挠曲力与位移, 分析了不同列车荷载作用长度、桥上扣件纵向阻力及墩台顶固定支座纵向刚度对挠曲力与位移的影响。研究结果表明: 在全桥加载情况下, 多跨简支梁桥上钢轨挠曲力在支座处表现为拉力, 跨中表现为压力, 大跨连续梁主桥上钢轨挠曲力在两侧边跨表现为拉力, 中间跨表现为压力, 单线加载时2种桥上有载侧钢轨挠曲力分别达到了38、53 kN, 约为双线加载时的1/2;轨道、桥梁结构纵向力与位移最大值不同时出现在同一工况下, 需要根据不同的检算部件选取最不利的列车荷载作用长度, 并将ZK活载中的集中力设置在跨中位置; 采用小阻力扣件可以改善钢轨受力与变形, 简支梁桥和连续梁桥上钢轨最大挠曲力分别减小了35%和22%, 钢轨纵向位移分别减小了7%和5%, 但轨板相对位移分别增大了26%和30%, 需加强观测以控制钢轨的爬行; 从轨道及桥梁结构的安全性与耐久性角度考虑, 建议将墩台顶纵向刚度控制在设计值的1.0~1.5倍范围内。   相似文献   

15.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

16.
连续道床板裂纹计算方法及影响因素   总被引:2,自引:1,他引:1  
为研究双块式无砟轨道连续配筋道床板裂纹扩展的机理,基于钢筋混凝土粘结-滑移理论,建立了适用于连续配筋混凝土道床板裂纹扩展的计算模型.依据该模型计算了道床板裂纹宽度和间距,分析了道床板配筋率、纵向钢筋直径和混凝土强度对裂纹宽度、间距及钢筋应力的影响.分析结果表明:钢筋直径和配筋率直接影响裂纹间距,裂纹间距随钢筋直径增大而增大,随配筋率增大而减小;混凝土抗拉强度、配筋率和钢筋直径是裂纹宽度的主要影响因素,裂纹宽度随混凝土强度和钢筋直径增大而增大,随配筋率增大而减小;裂纹截面处纵筋应力不应超过其抗拉强度,配筋率和混凝土抗拉强度是决定钢筋应力大小的关键因素.  相似文献   

17.
考虑纵连底座板断裂建立了CRTSⅡ型板式无砟轨道与桥梁纵向相互作用的力学模型,采用有限元法求解力学模型,确定了无砟轨道关键参数。以某大跨度连续梁桥为例,降温幅度分别为10、20、30、40、50℃时,纵连底座板在连续梁上7个代表性位置发生断裂后,分析了钢轨、轨道板、砂浆和桥梁墩台的纵向力与位移。分析结果表明:降温幅度为30℃时,纵连底座板在连续梁上发生断裂时,钢轨和轨道板的最大纵向附加力分别为155.75、233.21 kN,断板对钢轨和轨道板纵向附加力有较大影响;降温幅度不大于10℃时,纵连底座板在连续梁上任意位置发生断裂,轨道板与底座板的纵向相对位移均小于0.5 mm,砂浆不会开裂;降温幅度为50℃时,纵连底座板在连续梁上任意位置断裂引起的固定支座纵向附加力最大为196.12 kN,不会直接造成桥梁固定支座破坏;建议在维修作业时,锯切纵连底座板与其铺设时的温度差应不大于10℃,并检算钢轨的强度是否能满足要求。  相似文献   

18.
高速铁路纵连式无砟轨道锚固体系试验研究   总被引:2,自引:0,他引:2  
为获得梁体与轨道的合理制约关系,设计了纵连式无砟轨道锚固体系,并进行了现场试验.通过对锚固体系应力、位移和路基表层压力的监测分析,获得了锚固体系在设计荷载作用下的应力、位移变化及路基表层压力的分布规律.试验结果表明:双柱型主端刺锚固体系满足设计要求,为CRTSⅡ型板式无砟轨道结构更好地应用于客运专线提供了重要依据.  相似文献   

19.
针对刚构桥上无砟轨道无缝线路的受力与变形进行研究,以梁-板-轨相互作用原理为基础,分别建立刚构桥上CRTSⅢ型板式和CRTSⅠ型双块式无砟轨道无缝线路空间耦合模型,计算伸缩、挠曲、制动、断轨工况下轨道结构和桥梁纵向力及位移,并对两种轨道结构静力特性进行对比分析,为刚构桥上无缝线路轨道结构设计提供参考。结果显示:在温度荷载、列车荷载作用下,采用CRTSⅠ型双块式轨道结构时钢轨纵向力更小,但轨板相对位移增幅明显,可能产生安全隐患;在列车制动荷载工况下,采用CRTSⅢ型板式轨道结构时钢轨纵向力与轨板相对位移均更小;在断轨工况下,采用CRTSⅠ型双块式轨道结构时断缝值超过了规范容许限值。建议在刚构桥上采用CRTSⅢ型板式无砟轨道。  相似文献   

20.
为优化无砟轨道配筋后结构受力的均衡性,基于综合指数法提出了轨道配筋检算评估方法,选取形状改变能密度与高斯曲率作为评价分量构造了量化的配筋检算指标;建立了无砟轨道配筋检算有限元模型,以CRTSⅢ型普通板式无砟轨道板配筋为例,研究了不同钢筋排布方式对无砟轨道板整体受力性能的影响. 研究结果表明:相较传统应力变形指标,构建的综合指数指标能够凸显轨道板的不均匀受力区域;配筋时在轨下位置额外密布钢筋能够提升轨道板抵抗垂向车辆荷载的能力;局部配筋过于集中的方案会降低轨道板适应温度荷载的能力;在升温荷载作用下其轨道板端部的综合指数较最优工况时至少增大了1倍;综合来看,钢筋直径较大、排列稀疏的方案受力均衡性较差,无砟轨道板应选择钢筋直径较小、排列密布且轨下位置适当加密的配筋方案.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号