首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为了保证高速列车在隧道入口有侧风环境中的安全,采取数值分析的方法,建立高速列车进入隧道口存在侧风时的三维可压缩、粘性、非稳态湍流数学模型,研究了当隧道洞口有无侧风和隧道洞口侧风速度变化时隧道内的压力变化以及隧道内活塞风的变化规律.研究结果表明:隧道入口存在侧风时,隧道内测点先出现负压力峰值,后逐渐上升到正压力峰值;随着压缩波的向前传播,波形逐渐分化成两个波峰,并且压缩波越往前传播,第一个波峰逐渐消失,第二个波峰得到加强,其波峰的正压峰值超过无侧风时的最大正压峰值;隧道内速度场出现明显的非对称性,隧道内靠近迎风一侧的环状空间的列车风比背风一侧环状空间的小,背风一侧隧道入口处出现比较明显的涡流,侧风速度越大,最大负压值绝对值越大,隧道内测点的最大正压值、最大负压值均与侧风的速度成正比;当列车速度为350 km/h,侧风速度到达40 m/s时,隧道内活塞风的速度可达21.8 m/s,隧道内的压缩波的最大负压值可达-6 547 Pa.  相似文献   

2.
应用Navier-Stokes方程对350 km/h高速动车组通过隧道的空气动力特性进行数值模拟,湍流模型采用标准κ-ε双方程模型.计算表明列车在隧道内运行时空气动力学响应发生了剧烈变化:表面最大正压出现在列车鼻端,为8 030 Pa,列车尾部过渡区产生最大负压-5 628 Pa;列车中车底部裙板最大负压为-5 763 Pa;列车阻力系数不断变化,最大值为1.048.列车过隧道时表面压力变化幅值远远超过明线运行,最大增加率达1 259%.计算结果不仅可以作为后续结构强度分析的基础,为车辆优化设计提供参考,同时也为轨道与隧道建筑设计提供了有价值的信息.  相似文献   

3.
随着运营速度的提高,高速列车引起的气动效应与环境的相互作用变得更加复杂和剧烈,特别是高速列车通过隧道时形成活塞风,其对隧道内附属设施的荷载作用越来越显著。针对高速列车通过隧道时产生的活塞风冲击荷载,以隧道线缆夹具为研究对象,建立三维模型,并对其进行网格划分;应用有限元分析软件ANSYS,对隧道线缆夹具进行静力学分析以及模态分析。结果表明,隧道线缆夹具在强活塞风的作用下,其结构所受等效应力满足材料的最大屈服极限,变形量较小,可在实际工程中推广应用。  相似文献   

4.
提出了一种适用于工程设计的活塞风简化计算方法.该方法从运动列车与隧道气流的功能转换出发,以列车作用段作为活塞风压源,利用流体力学的基本原理、基本方程和湍流半经验理论,提出了活塞风压力和速度的计算方法.以现场实车的隧道空气动力学试验资料为参照进行对比,活塞风速度的计算值与实测符合度较好,这表明以不可压缩定常流动为计算模型的活塞风简化计算方法可为活塞风的工程实际应用提供理论基础.  相似文献   

5.
基于连续性方程Reynolds时均Navier-Stokes方程以及RNG k-ε湍动能模型方程对都市快轨列车隧道运行的空气动力流场进行数值计算.研究在以160 km/h隧道运行速度分别通过圆形和矩形隧道的工况下,从列车进入隧道直至整车完全驶出隧道的空气阻力以及车体表面压力变化情况,并对圆形及矩形隧道流场特性进行对比.计算结果表明:列车在矩形隧道和圆形隧道运行过程中的最大阻力分别达到15 458.5 N和13 829.3 N,最大表面压力分别达到4252.3 Pa和3 815.8 Pa.在两种隧道中运行的列车阻力变化规律及列车表面压力变化规律相同,矩形隧道运行时列车的最大阻力与圆形隧道相比增加了14.3%,表面最大压力增加了l3.8%.  相似文献   

6.
地铁列车在进站或驶离车站过程中产生的活塞效应及其活塞风与地铁通风和能耗关系密切。随着地铁的广泛应用,如何在保证满足站厅和站台层舒适度要求的前提下,尽可能的降低能耗,减少运行费用,是建设和管理部门必须考虑的问题。所以有关活塞风的合理利用对于实现地铁运营节能具有重要的理论价值和实际意义。从活塞风的成因出发,系统的研究了影响活塞风成风大小的因素,对影响活塞风成风的主要因素进行了SES单因素模拟试验,并指出活塞风成风因素的优化选择。这既是合理利用活塞风以实现进一步节能的有效途径,也为地铁设计和运营提供理论上的支持和技术上的参考。  相似文献   

7.
魏军  雷晓燕 《轨道交通》2009,(11):67-71
建立列车一轨道连续弹性双层梁平面模型,模拟地铁列车运行时引起的轨道结构振动,采用快速傅里叶变换法并结合Matlab软件编制程序,求出作用在隧道基底的荷载值,在此基础上,建立“隧道一土层”三维有限元模型,计算并分析了不同列车速度、不同隧道埋深等工况组合下地铁列车引起的大地振动传播规律。  相似文献   

8.
为制定时速250 km速度等级动车组设备舱裙板气动载荷谱,通过对实际运行中的时速250 km等级动车组设备舱裙板气动载荷开展线路测试研究,并将全线所有列车通过隧道、列车明线交会工况集中起来统计分析,得出了设备舱裙板各测点内外压差的最大值、最小值和峰峰值的统计分布规律.经分析,列车隧道通过、隧道交会、明线交会时,设备舱裙板各点绝对压力的有不同特征;设备舱裙板气动载荷压差峰峰值最大不超过1500 Pa,该值可作为时速250 km速度等级列车设备舱裙板静强度载荷设计输入参考值;压差峰峰值主要集中在1000 Pa左右,该值可以作为时速250 km等级动车组设备舱裙板气动载荷疲劳设计输入参考值.  相似文献   

9.
为精确计算列车动荷载作用下软土地铁盾构隧道频域振动响应,考虑地基动刚度随应变频响的非线性变化,建立了车辆/轨道/隧道/软土地基的垂向耦合动力学模型,研究了不同轨道平顺等级下软土动刚度随应变频响非线性变化对地铁盾构隧道随机振动的影响规律.研究结果表明:随着轨道平顺性的恶化,地基动刚度随应变频响非线性的变化将引起地铁盾构隧道各频段内的振动加速度级出现明显的非均匀变化;轨道不平顺恶化后,软土地基动刚度的非线性将改变地铁盾构隧道频域振动幅值大小,且其对应频率会出现约有0.2 Hz的偏移,致使地铁盾构隧道频域振动能量出现重分布现象.   相似文献   

10.
通过动模型试验与CFD计算,研究时速250 km/h的CRH3A型城际动车组单车通过隧道时列车表面以及隧道表面的压力变化.结果表明:列车单车过隧道时隧道中流场的压力变化主要是由列车车头刚进入隧道时形成的压缩波与车尾进入隧道时形成的膨胀波在隧道内往返传播、反射等影响造成;单列车通过净空面积80 m2的隧道时最大压力变化量ΔP为2.6 k Pa,出现在鼻尖点.列车过隧道时头尾部附近的隧道内流场呈现一定的三维变化过程.数值仿真分析与动模型试验结果基本吻合,可以相互验证.  相似文献   

11.
隧道洞口段铺设保温层不能完全解决寒区隧道的冻害问题,为此提出一种新型寒区隧道空气幕保温系统,采用叠加原理、分离变量法和贝塞尔特征函数建立列车风影响下寒区隧道温度场计算模型,研究不同列车运行速度和运行间隔时寒区隧道温度场的分布规律,验证了新型寒区隧道空气幕保温系统保温效果. 研究结果表明:当外界气温为 ?30 ℃,围岩地温为5 ℃时,隧道洞口段铺设保温层已无法满足寒区隧道保温需求,应与主动保温措施联合;寒区长大隧道结构防寒不应仅在洞口段,若列车运行速度大(大于200 km/h)、列车运行频率高(间隔小于30 min),寒区长大隧道需要全隧道防寒;50 m的保温空气幕联合1 050 m的保温层可以满足外界气温为 ?30 ℃、围岩地温为5 ℃、列车运行速度为300 km/h、列车运行间隔为10 min这种极端情况下寒区隧道的保温需求.   相似文献   

12.
为分析高速磁浮列车驶入隧道时产生的初始压缩波特征, 采用三维可压缩非定常流动的N-S方程和SST κ-ω湍流模型, 基于重叠网格法和有限体积法, 以国内正在研发的时速600 km高速磁浮列车头型为研究对象, 建立了高速磁浮列车驶入隧道的计算模型, 通过分析距隧道进口端内不同距离横截面上不同测点的压力及压力变化率, 得到了车头驶入隧道洞口初始压缩波的空间分布特性和传播特性, 以及不同速度对初始压缩波波动幅值的影响。研究结果表明: 初始压缩波在列车驶入隧道前开始形成, 形成初期具有三维特性, 在隧道截面同一高度上, 靠近车体一侧的初始压缩波压力要比远离车体一侧大; 在隧道截面同一侧, 靠近车体一侧高度越低, 初始压缩波压力越大, 而远离车体一侧初始压缩波压力与高度无关; 当列车驶入隧道一定距离后, 在列车头部前方约36 m处隧道内同一断面处压力相同, 初始压缩波由三维波变成一维平面波; 在列车流线型头部驶入隧道约0.15 m时, 位于隧道300 m测点处的初始压缩波的压力变化率达到最大值; 列车速度越高, 初始压缩波压力峰值越大, 位于隧道100 m处测点的初始压缩波的压力峰值与列车速度的2.5次方近似成正比, 压力变化率峰值与速度的3次方近似成正比。   相似文献   

13.
为明确山区隧道出入口区段的车辆运行特性和驾驶行为,揭示隧道洞口交通事故的发生机制,在高速公路和城市快速路各选择3座隧道,采集了小客车和货车在隧道出入口区段的断面速度,高速公路单个断面观测样本大于500 veh,快速路隧道单个断面样本大于1 100 veh,基于断面数据分析了车辆行驶速度的变化规律和影响因素,并建立了运行速度预测模型。分析结果表明:驾驶人临近隧道洞口时会减速,小客车速度降幅为12~21 km·h-1,货车速度降幅为2~10 km·h-1,货车速度降幅低于小客车;洞口位置小客车运行速度大于80 km·h-1,货车运行速度大于70 km·h-1;高速公路隧道出入口段的车速范围为75~110 km·h-1,快速路隧道出入口段的车速范围为60~88 km·h-1,高速公路隧道出入口段的车速普遍高于城市快速路隧道; 驾驶人进入隧道洞内适应环境之后会加速行驶,驶出隧道时有加速行为,但当隧道出口前方有小半径弯道和互通立交时,驾驶人会减速以适应前方的道路条件;隧道入口前100 m至洞口范围内的车辆减速度最大,货车减速度范围为0.23~0.58 m·s-2,小客车减速度范围为0.47~ 0.70 m·s-2;同一断面的速度观测值存在较强的离散性,表明车辆之间存在明显的纵向干涉,容易发生追尾事故。   相似文献   

14.
列车由隧道驶上桥梁时会承受突变的风荷载,列车的响应发生突变,导致列车的行车安全受到威胁. 以某客运专线桥隧过渡段为研究背景,通过计算流体动力学 (CFD) 数值模拟和车桥耦合振动分析,计算了CRH3型列车通过桥隧过渡段时受到的气动力及车辆响应;对比分析了头车、中间车及尾车的气动力及列车响应,研究了大风攻角对列车气动力及行车响应的影响,探讨了最不利的安全指标. 研究结果表明:越靠近车头的车体,气动力突变与列车响应越大;相比0° 攻角,正风攻角对行车相对有利,+7° 的风攻角下列车受到的气动阻力和力矩减小了约10%;负风攻角会增大列车的气动力突变效应和行车响应,?7° 风攻角下列车受到的气动阻力和力矩增加了约10%;风速在22.5 m/s以下时,CRH3列车能够以200 km/h的车速安全通过桥隧过渡段;20 m/s风速时,车速在325 km/h以下时列车能够安全通过桥隧过渡段;随着车速与风速的增加,轮轴横向力是首先超限的安全性指标.   相似文献   

15.
This paper presents a one-dimensional unsteady flow model and a numerical procedure based on the model. Comparisons between the theory and full scale experiments in a railway tunnel show that the model is capable of produce precise predictions for piston wind and pollutant concentration in railway tunnels.  相似文献   

16.
以CRH2型高速列车穿行隧道过程的气动特性为研究对象,建立了列车模型及具有不同缓冲结构、不同阻塞比的隧道计算模型,并与相同工况下的模型实验进行对比,验证了仿真模型的可行性.以kε-湍流模型为基础,对高速列车以不同速度进入具有不同缓冲结构、不同阻塞比的隧道时的外流场进行了仿真模拟.分析了列车在进入隧道时压缩波的产生机理,得到了列车表面风口在车体进入隧道过程中的压力波动情况.仿真结果表明:隧道缓冲结构的缓冲性能按抛物线型、线性、不连续性的顺序依次减小;压力值随阻塞比增大而线性减小.由此提出了减小列车进入隧道时表面压力波动的方法.  相似文献   

17.
晏致涛  李杰  张璞  游溢  宫博 《西南交通大学学报》2020,55(5):994-1000, 1027
目前的风沙风洞大多适用于风沙地貌、风沙环境的研究以及防护治理,而用于结构风工程的风沙风洞很少,因为其需要在一定高度处能够实现风速和风沙浓度可调的均匀稳定段.为了研究直流漏沙式风沙风洞中风沙流的分布规律,运用FLUENT建立风洞模型,通过对已有的漏沙风洞试验进行数值模拟,验证了模型的正确性.进一步基于风洞风速、漏沙体积分数、漏沙速度等参数对风洞风沙流的影响规律,提出了一种新型的水平多口风洞漏沙装置.对该风沙风洞的分析表明:在试验模拟浓度的范围内,风洞风速越大,同一位置的沙粒分布高度越高;漏沙体积分数和漏沙速度主要影响单位时间内进入风洞的沙粒质量,且试验位置沙粒浓度的峰值与单位时间进入风洞的沙粒质量成正比;该风沙风洞可以得到约1/2风洞高度的沙粒浓度均匀试验段,并可以通过调节漏沙体积分数、漏沙速度和试验位置可得到试验所需的试验风速及对应的沙粒浓度,使其能很好地完成风工程中的风沙定量试验.   相似文献   

18.
为研究高速列车在运营过程中的气动特性, 分析其气动特性变化机理, 设计了2种高速列车-桥梁系统的气动特性风洞试验方案; 开发并建立了适用于在风洞中的高速列车-桥梁系统试验方法与系统; 试验系统分为运动系统与数采系统2个部分; 运动系统基于惯性驱动原理, 以高速伺服电机为驱动力, 通过高强度旋转传送带将缩尺比为1∶8~1∶30的移动车辆模型在风洞中以最高速度50 m·s-1模拟真实运行环境中运行; 在运动系统的搭载下, 自主研发了一套数采系统, 并在风洞实验室中对有无横风作用下的列车进行了气动特性测试。分析结果表明: 试验方法与系统适用于加减速距离短、瞬时加速度大的试验场景, 且不受车辆外形与基础设施的限制, 可降低设计成本, 提高试验的安全与稳定性; 标准误差与平均值之比均不大于10%, 表明数采系统测试的车辆气动特性有较好的平稳性和可重复性, 能够精准得到列车在不同试验条件下的气动特性; 通过对比有无横风作用下的列车气动特性, 得到列车速度对车辆的气动特性影响极其重要; 列车高速移动时, 其因速度产生的气动影响远远大于横风, 且表面测点平均风压系数最大值可达-10, 反映了静态模型的试验方式不能够满足模拟列车高速运行时气动特性状态。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号