首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 764 毫秒
1.
在互联和自动驾驶环境下,生态驾驶具有显著的潜力,可提高交通效率并降低能源消耗和排放。本文探讨一种基于深度强化学习算法的生态驾驶策略,该算法可优化互联自动驾驶汽车(CAV)的纵向操纵和横向决策;将状态空间分为与车辆动态特性相关的局部变量,以及与信号交叉口相关的全局变量,确保CAV与环境之间的充分互动;奖励函数综合考虑了车辆的驾驶要求,与信号灯的协同作用以及全局节能激励因素;此外,设计一个典型的城市道路场景训练模型。结果表明,在信号灯和智能体输出协同控制下,本文提出的策略可以实现CAV的生态驾驶,并确保CAV准确驶入目标车道;在动态交通环境下进行仿真显示,通过控制多辆CAV引导人工驾驶车辆,本文方法可将交叉路口的通行能力提高约17.90%,并将交通系统的燃料消耗和污染物排放降低约8.76%。  相似文献   

2.
为实现车辆在信号交叉口区域的节能减排及提高道路通行效率,本文构建基于目标车速关联的油耗排放模型,建立生态驾驶诱导车速控制策略。在加减速通过场景下以油耗、排放和通行时间为优化目标,以道路限速和不停车通过车速为约束,利用多目标遗传算法优化生态驾驶目标车速;基于MATLAB与交通仿真软件VISSIM进行不同算法渗透率及道路饱和度场景下的联合仿真,将仿真结果导入微观排放模型MOVES测算能耗排放。仿真结果表明:控制策略与无控制时相比,在高算法渗透率、低道路饱和度场景下,车辆平均速度提高13.8%,怠速工况比例下降 33%,中速巡航工况比例上升18%,能耗及N2O、NOX、HC、CH4排放分别减少6.6%及12.2%、4.0%、 6.3%、2.9%,CO排放增加2.5%。最后,依据仿真得到不同控制策略下的速度轨迹在底盘测功机上完成实车实验,实验结果表明,基于交通流优化的控制策略与无控制场景相比,能耗及 CO、 CO2、PN排放分别减少53.1%及47.6%、50.4%、39.8%,NOX排放增加13.6%。  相似文献   

3.
信号交叉口绿色驾驶车速控制方法   总被引:2,自引:0,他引:2  
信号交叉口是整个城市交通路网中的瓶颈区域.车流经常在路口停车等候造成怠速行驶,严重降低交叉口的通行效率,同时造成严重的汽车尾气排放污染.为了减轻交叉口对交通流的阻断,合理降低信号交叉口的车辆延误、燃油消耗和污染物排放,本文提出了一种基于多级可变速度限制的信号交叉口绿色驾驶控制方法.该方法以可变速度限制值为控制变量,并基于固定式检测器获取的交叉口附近道路交通状况信息对车辆进行速度限制值的实时发布,以实现在不增加旅行时间的基础上平滑车辆驶近交叉口过程中的时空轨迹.通过MATLAB对该方法进行仿真验证,结果表明,其能够有效地降低交叉口的车辆延误,并减少车辆的燃油消耗与污染物排放量.  相似文献   

4.
传统自动驾驶车辆以假设通行权为前提设计冲突消解算法,但在无信号交叉口存在道路通行权不明确情况,给自动驾驶车辆决策带来困扰.本文提出基于多车协作优化的无信号交叉口冲突消解方法,将多个自动驾驶车辆看成一个整体,利用多目标优化控制理论,计算分配给相互冲突车辆的期望速度规划,达到协作行驶的目的.设置协作与非协作式冲突消解仿真实验.结果表明:多车协作的冲突消解方法通过优化车辆联合行动,使交叉口车辆整体收益最大,各利益体间的收益更为均衡;与非协作行驶决策相比,冲突消解时间缩短,减少交叉口单车平均延误1~2 s,平均减少量约为5%.本文可为无信号交叉口自动驾驶车辆冲突时自主协同行驶提供参考.  相似文献   

5.
传统自动驾驶车辆以假设通行权为前提设计冲突消解算法,但在无信号交叉口存在道路通行权不明确情况,给自动驾驶车辆决策带来困扰.本文提出基于多车协作优化的无信号交叉口冲突消解方法,将多个自动驾驶车辆看成一个整体,利用多目标优化控制理论,计算分配给相互冲突车辆的期望速度规划,达到协作行驶的目的.设置协作与非协作式冲突消解仿真实验.结果表明:多车协作的冲突消解方法通过优化车辆联合行动,使交叉口车辆整体收益最大,各利益体间的收益更为均衡;与非协作行驶决策相比,冲突消解时间缩短,减少交叉口单车平均延误1~2 s,平均减少量约为5%.本文可为无信号交叉口自动驾驶车辆冲突时自主协同行驶提供参考.  相似文献   

6.
为避免车辆在交叉口的急加减速与启停现象,减少车辆燃油消耗和污染物排放,提出了一种考虑二次排队的智能网联车生态驾驶策略。首先构建了考虑驾驶员反应的交叉口处排队车辆的改进IDM跟驰模型,通过信号配时、车辆排队长度等信息估计排队车辆消散时间;其次,依据交叉口处是否出现车辆二次排队,将生态驾驶策略分类为“前方车辆在绿灯时间清空”和“前方车辆二次排队”两种情况,结合智能网联车与交叉口的距离等信息优化车辆行驶轨迹;最后将提出的生态驾驶策略与自由驾驶在不同排队长度场景下进行对比仿真实验。仿真结果表明:相较于自由驾驶,生态驾驶策略能够有效减少车辆的急加减速与停车行为,随着交叉口排队长度的增加,生态驾驶策略的优化效果更加明显;当排队车辆在第一个绿灯时间消散时,采用生态驾驶策略的车辆的总体油耗降低了9.98%,CO2、CO、HC、NOx平均排放量分别降低了11.69%、20.14%、1.66%和29.09%;当交叉口处出现车辆二次排队时,采用生态驾驶策略的车辆总体油耗降低了15.0%,CO2、CO、HC、NOx平均排放量分别降低了15.42%、27.51%、2....  相似文献   

7.
考虑车辆价值的倒计时信号交叉口 驾驶员驾驶行为建模   总被引:1,自引:0,他引:1  
为了发现车辆价值是否对驾驶员在倒计时信号交叉口的驾驶行为产生影响, 以激进型驾驶行为、普通型驾驶行为和保守型驾驶行为为典型的驾驶行为,运用交叉口 录像获取数据方法,采集了车辆经过典型倒计时信号交叉口时的车辆价值、车速、倒计时 剩余时间、所在车道等具体数据,并对3 种驾驶行为进行了判定,建立了分时段的倒计时 信号交叉口驾驶行为Logistic 模型.结果表明,在红灯倒计时显示的3~0 s 时间段内,与保 守型驾驶行为相比,激进型驾驶行为与车辆价值、车速、所在车道有关系,普通型驾驶行 为仅与车辆价值、车速有关系;在绿灯倒计时显示时间为3~0 s 与n ~3 s 的时间段内,激进 型驾驶行为与普通型驾驶行为与车辆价值、车速有关系.结果说明,驾驶员所驾驶的车辆 价值对驾驶员在倒计时信号交叉口的驾驶行为产生影响.  相似文献   

8.
信号交叉口的车速控制不当会降低车辆的燃油经济性甚至引起追尾碰撞事故,车路协同环境下的车速引导系统可以有效提高信号交叉口处的通行效率和燃油经济性。现有车速引导研究大多忽略了驾驶员风格的差异性,将导致驾驶员无法准确跟踪引导速度。针对该问题,建立考虑驾驶风格的闭环反馈车速引导模型。首先,分析不同风格驾驶员车辆最大纵向加速度的概率分布;其次,研究闭环反馈车速引导方法,使驾驶员更准确地跟踪引导车速;然后,基于机会约束规划方法优化闭环反馈车速引导模型,使模型更加符合驾驶员的不同风格;最后,在MATLAB/ Simulink环境中设计仿真场景,对激进型、适中型和保守型3种闭环反馈车速引导模型进行仿真分析。仿真结果表明:相较于传统车速引导模型,本文模型可使不同风格的驾驶员更容易跟踪引导车速,其中,激进型和适中型车速引导模型可以使车辆以更短的时间通过交叉路口,保守型车速引导模型可以提高车辆在绿灯相位通过交叉口的概率。本文方法可以有效地提高信号交叉口的通行效率。  相似文献   

9.
新型混合交通环境下的交叉口交通控制可通过信号灯控制与自动驾驶车辆的轨迹控制协同实现,能够极大地优化道路通行资源利用效率。已有研究中,信号配时与车辆轨迹集中优化的控制策略难以应用于车辆自组织控制的现实场景,且往往计算复杂度较高。本文提出一种无中心框架下基于逻辑的交叉口信号与车辆轨迹协同控制方法。基于协同理论中的快慢变量主动伺服控制原理,设计一种交叉口信号配时慢变量与车辆轨迹策略快变量协同框架,并分别提出基于逻辑的信号配时优化和网联自动驾驶车辆轨迹协同控制方法。协同控制方法可以在车辆自主控制的条件下,一方面,实现交叉口信号配时动态适应交通需求;另一方面,实现网联自动驾驶车辆主动优化驾驶速度,高效通过交叉口。而且网联自动驾驶车辆在进口道可引导混合车队高效通过交叉口,降低绿灯启动损失,提高交叉口通行效率。仿真实验表明,本文的协同控制方法相较于传统控制方法可显著降低交叉口车辆平均延误,同时,基于逻辑的决策模型可实现快速求解。通过对网联自动驾驶车辆控制策略关键参数的敏感性分析,进一步讨论新型混合交通流交叉口通行公平性,并比较在不同网联自动驾驶车辆渗透率下的控制效果。  相似文献   

10.
结合微观仿真元胞自动机模型和机动车排放MOVES模型,以十字信号控制交叉口为仿真对象,研究交叉口信号配时与机动车排放之间的关系.元胞自动机模型将交叉口和路段划分为3.5 m×3.5 m的元胞,每辆车占2 个元胞,交叉口内转弯车辆减速慢行,直行车辆速度不受限制,提高了交通仿真的真实性和机动车排放测算的准确性.仿真结果表明:最佳信号周期随着车辆到达率的增加而增加,使得交叉口通行效率达到最大化;行程时间随着左转车比例的增加而增加,对于不同的车辆到达率,均存在一个极限值,当左转车比例低于该极限值时,行程时间变化不大,高于该极限值时,行程时间快速增加;从通行能力、行程时间和尾气排放的角度,交叉口具有不同的最佳信号周期,且差异较大.  相似文献   

11.
信号交叉口对城市道路的通行能力以及车辆的燃油消耗具有重要影响。本文提出一种在自动驾驶车辆和人工驾驶车辆混合交通流环境下的自动驾驶车辆的轨迹优化方法。基于交叉口信号灯的配时方案,构建车辆旅行时间估计模型,并以自动驾驶车辆燃油消耗最小以及通行效率最大为目标,构建自动驾驶车辆轨迹优化模型,对车辆进行动态轨迹规划和控制。车辆轨迹滚动优化模型采用高斯伪谱法进行离散化求解,并基于SUMO仿真平台对模型结果进行验证。仿真结果表明,自动驾驶车辆可以通过优化自身控制变量影响人工驾驶车辆的运行状态,减少交通流的排队以及时走时停现象。本文提出的车辆轨迹优化方法对于降低车队整体燃油消耗、提升车队平均速度、缩短平均行程时间具有重要作用。  相似文献   

12.
针对过饱和信号交叉口车辆高能耗问题,以信号交叉口整个过饱和交通状态持续时间作为研究时段,利用定数理论分析车辆排队长度、停车次数和通行时间,确定车辆在信号交叉口的减速、怠速、加速和匀速行驶时间,进一步依据车辆在不同行驶状态下的能源消耗率,建立了过饱和交叉口所有车辆第1次停车至通过停车线的平均能耗模型.为了验证模型的准确性,以某个两相位过饱和交叉口为例,对不同交通流量下的车辆能耗进行计算,并将计算结果与VISSIM仿真结果对比分析,结果表明,本文模型对过饱和信号交叉口的车辆能耗分析具有一定的合理性.同时,依据此模型分析了信号配时对过饱和交叉口车辆能耗的影响,说明了优化配时参数对于过饱和交叉口车辆节能具有重要意义.  相似文献   

13.
为了提高网联信号交叉口车路协同控制对真实交通环境的适应性,以智能网联汽车与网联人工驾驶汽车混行的典型交通应用场景为研究对象,通过构建八相位网联信号交叉口,研究了混行环境下的交通信号和网联车辆轨迹车路协同优化控制方法;在对场景中的网联车辆运动学特性和跟驰行为进行建模的基础上,构建了一种混行车辆编队方法;基于混行车队模型、安全约束与燃油消耗模型,建立了基于滚动优化的交通信号-车辆轨迹协同优化控制方法;基于异步分层优化思路,将该协同控制问题分解为上层交通信号优化与下层车辆轨迹优化两方面,以交叉口车辆行驶延误时间和燃油消耗量为优化目标,利用遗传算法和“三段式”轨迹优化法分别对交通信号优化问题与车辆轨迹优化问题进行求解;对不同稳态车速与智能网联汽车渗透率下构建的混行交通流的稳定性进行了验证,并通过仿真测试分析了所提出的协同优化控制方法的控制效能与关键参数对控制效能的影响。分析结果表明:在不同交通流量与智能网联汽车渗透率下,提出的控制方法均可有效提升交叉口通行效率与燃油经济性;在完全渗透环境下,较固定配时交通信号控制方法最高可分别提升57.3%和13.3%;随着智能网联汽车渗透率的增加,其控制效能不断提高,较无渗透条件最高可分别提升42.0%和14.2%;即使智能网联汽车渗透率仅达到20%,较无渗透条件也可以在交通效率方面实现20.4%的显著改善;较长的交通信号周期与较短的网联人工驾驶汽车驾驶人反应时间有助于协同控制效能的提升。   相似文献   

14.
为解决城市发展带来的交通拥堵问题,发掘道路交通的潜力,提高车路协同环境下车辆在路网中的行驶效率,面向群体车辆提出了一种诱导优化方法和协同控制策略;在车辆诱导分配方面,在起始点和目的地之间的可达路径中,以交通效率最优、车辆排放最小为目标,设计了基于道路饱和度、车辆行程时间和延误的群体车辆分配规则,建立了群体车辆诱导分配优化模型,并用多目标非支配排序遗传算法-Ⅱ(NSGA-Ⅱ)和多目标粒子群优化算法进行求解;在车辆协同运行控制策略方面,基于引力场思想建立了多车协同运行模型,并提出了多车协同加减速策略;通过仿真验证比较了不同网联自动驾驶车辆(CAV)渗透率下的车辆诱导优化结果,同时仿真了车辆协同加减速策略,并将诱导优化方法和协同控制策略进行了联合仿真。仿真结果表明:多目标诱导分配方法可以提升车辆速度和环境效益,且群体车辆平均速度与CAV渗透率正相关;在四车组队行驶环境中,车辆协同加减速策略能够将车辆在加速和减速时的初始平均加速度分别提高15.0%和8.2%,让车辆快速达到目标速度,保障行车安全;在联合仿真环境中,路网群体车辆的加速度平均提高了11.6%,速度平均提高了1.6%,碳氧化合物排放量减少约4.9%。由此可见,提出的方法能够提高路网通行效率,降低车辆能源消耗,减少对环境造成的不良影响。   相似文献   

15.
在智能网联环境下,车辆可通过相互穿插和协作通过交叉口,无需信号灯控制。为保证车辆安全高效运行,建立车辆到达时序和速度协同优化的交叉口车流轨迹优化模型。提出车辆到达时序优化模型和车辆速度优化模型,建立车辆到达时刻与速度的函数关系;在此基础上,模型以所有车辆在控制区域的行程时间与油耗加权最小为目标,车辆路径、到达时刻和速度等关键参数为决策变量,设计迭代式算法求解,实现同时优化车辆到达时刻和速度且交叉口运行效益最大的目的。实验结果表明,与车辆时序和轨迹分别优化的两阶段模型相比,本文模型降低车均延误 32.1%,减少车均油耗9.9%,说明该模型具有良好的主动性和适应性,在降低车辆延误的同时也节省了油耗。  相似文献   

16.
鉴于油耗与节约能源和车辆尾气排放直接相关,探究自动驾驶车辆对油耗的影响. 以手动驾驶车队与自动驾驶车队为数值仿真对象,在交通震荡环境下设计数值仿真实验. 对车队的车辆数量,车队初始速度,以及自动驾驶车辆的车间通信延时做参数敏感性分析. 基于机动车比功率的油耗评价模型,对仿真结果进行统计;相比于手动驾驶车队,计算自动驾驶车队平均油耗率的降低. 从交通流稳定性角度考察油耗降低与稳定性状态转变之间的内在关联性. 研究结果表明,自动驾驶车辆对油耗的降低幅度与车队初始速度有关,与交通流稳定性之间存在定性的影响关系,交通流的平稳性有利于显著改善车辆油耗降低的幅度. 研究结果可为大规模自动驾驶背景下的油耗控制策略提供理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号