首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
风荷载-列车-大跨度桥梁系统非线性耦合振动分析   总被引:1,自引:0,他引:1  
考虑桥梁结构的几何非线性因素,建立了风-列车-桥梁系统耦合振动分析模型.以某大跨度钢桁梁桥为例,计算了静风及脉动风荷载的不同作用效应、风速及车速变化对桥梁位移极值的影响及桥梁几何非线性因素对结构分析的影响.结果表明,进行车桥耦合振动分析时要综合考虑风荷载的动力作用,风速及车速变化对桥梁位移极值均有较大影响,桥梁的线性及非线性位移时程曲线存在明显区别.  相似文献   

2.
以芜湖长江大桥为算例,考虑风荷载作用于列车和桥梁上,对ICE高速列车以200km/h的速度通过桥梁是,计算了与列车运行安全性及旅客乘座舒适度相关的的指标。风荷载考虑为脉动的,按Simiu谱用Monte Carlo法模拟脉动风速,结合由风洞试验测定的空气动力参数,计算了作用于列车和桥梁上的自然风荷载。根据结构动力学理论,建立了机车(车辆)的动力学方程,建立了桥梁的有限元振动方程;桥上轨道不平顺按6级线路(最好的线路)模拟。计算结果表明,对芜湖长江大桥,桥上允许行车的桥面处横桥向最大风速应小于30m/s。  相似文献   

3.
风荷载对悬索桥的运营期安全有重要影响.文章利用健康监测系统实测数据,建立了江阴长江公路大桥风特性数据库.在此基础上,一方面针对风速设定报警阈值,从而保证了行车与结构安全,另一方面计算得到紊流强度、阵风系数等风特性,对桥梁设计风荷载参数取值的合理性进行了验证.研究结论为江阴大桥的抗风安全性评价提供了实测依据,同时可为该地区其他工程结构的抗风研究提供参考.  相似文献   

4.
在横向风荷载的作用下,桥梁会产生风荷载本身引起的动力响应,且风荷载会对车桥系统耦合振动起到激励作用,使车桥系统的动力响应明显增大。结合工程实例,把车、桥、风作为一个整体耦合振动系统,车辆荷载采用随机车流分布荷载,对车桥系统在风速不相等的风速场里的振动响应进行分析与评价,并对桥上汽车进行了动力响应分析和评价。  相似文献   

5.
以刘家峡大桥为工程背景,建立了钢桁架梁悬索桥的有限元模型,采用改进谐波合成法模拟了脉动风荷载,结合大跨桥梁颤抖振分析的基本理论,计算了对应于桥梁各节点的静风力、抖振力和自激力.在此基础上,利用ANSYS参数化设计语言(APDL)编制了相应的计算程序,将计算所得的各类风荷载施加在全桥有限元模型的节点上,对刘家峡桁架梁悬索桥进行了颤抖振时域分析,以精确求解不同桥面基准风速下,桥梁各关键部位的抖振扭转角、抖振侧向位移、抖振竖向位移,进而研究了风速变化对悬索桥最大颤抖振响应的影响.与全桥模型风洞试验的对比结果表明:对大跨桥的颤抖振分析方法是合理可行的,可为同类大跨桥梁风致振动的研究提供科学的依据和参考.  相似文献   

6.
斜拉桥在考虑风效应时的车-桥耦合振动   总被引:3,自引:0,他引:3  
以芜湖长江大桥为算例,考虑风荷载作用于列车和桥梁上,对ICE高速列车以200km/h的速度通过桥梁时,计算了与列车运行安全性及旅客乘座舒适度相关的指标.风荷载考虑为脉动的,按Simiu谱用MonteCarlo法模拟脉动风速,结合由风洞试验测定的空气动力参数,计算了作用于列车和桥梁上的自然风荷载.根据结构动力学理论,建立了机车(车辆)的动力学方程;建立了桥梁的有限元振动方程;桥上轨道不平顺按6级线路(最好的线路)模拟.计算结果表明,对芜湖长江大桥,桥上允许行车的桥面处横桥向最大风速应小于30m/s.  相似文献   

7.
采用谱解法模拟脉动风荷载场,根据风洞试验测得的车辆的空气动力参数,计算出作用在车辆侧面的风荷载;将风荷载加到人-车-路耦合振动系统方程中,建立起考虑其影响的系统耦合振动方程;采用人体加权竖向振动加速度均方根值对车辆乘坐舒适度进行评价,并对模拟风速场及侧向风速大小对车辆乘坐舒适度的影响进行讨论.分析表明:静态风减小了人体、车辆振动加速度的最大值,但对其加速度均方根值没有影响;脉动风作用下人体振动加速度最大值略有变化,但均方根值却增大较多;侧向风荷载场对路面结构的振动几乎没有影响;平整路面下乘坐者出现不舒适感的临界风速为55m/s,A级不平整路面出现不舒适感的临界值为15m/s.  相似文献   

8.
为了避免屋盖结构在暴风雪中发生动力失稳,建立了基于稳定等效的静力风荷载计算方法.采用计算流体动力学方法模拟了屋面积雪漂移现象;根据Budiansky-Roth准则判定了覆雪屋盖的动力稳定性;借鉴阵风荷载因子法构建了基于稳定等效的静力风荷载计算方法;最后,对实际双层柱面网壳进行了动力稳定性设计.研究结果表明,强风下覆雪屋盖出现较为明显的失稳阶段,当风速为设计基准风速的1.0倍时,屋盖发生动力失稳,静力失稳计算可得临界风速为35.8 m/s,该结果可作为该屋盖设计的动力失稳临界风速.   相似文献   

9.
以某高桩跨海大桥为背景,介绍了风荷载的计算方法,并对最大双悬臂状态的风载内力、静风稳定性及颤振稳定性进行了验算.验算结果表明:风荷载的大小及作用方式对主梁、主墩及桩基强度和位移影响比较大;风荷载的加载方式对桥梁的稳定性影响较小,对结构稳定性起主要作用的是恒载、施工荷载.  相似文献   

10.
为研究山区地形对处于峡谷中桥梁风场特性的影响,以建设在某峡谷中的一座大跨度桥梁为研究背景,利用计算流体力学软件FLUENT,设计了数值模拟方法,对桥址处风场进行计算分析.在利用实验数据验证模拟方法可靠性的基础上,通过不同来流方向的计算结果,分析了山区地形对主梁上顺桥向和横桥向的风速、风攻角及桥位处的平均风剖面分布的影响,以及峡谷效应产生的风速放大系数.研究结果表明:桥位来流方向的高耸山体会影响该侧主梁上水平风速的分布,并在该侧产生向下的风攻角;峡谷内的风剖面下部会发生畸变;特定的来流方向会在跨中产生风速放大效应.   相似文献   

11.
《黑龙江交通科技》2017,(3):101-103
处于多风地区的大跨度斜拉桥结构,风荷载是桥梁设计时必须考虑的因素,但采用随机振动理论进行结构设计,计算过程往往比较复杂。利用等效静阵风荷载计算了结构在风荷载作用下的响应,为桥梁的设计提供依据,对同类工程具有一定的借鉴作用。  相似文献   

12.
为研究山区风环境下悬挑式人行桥梁抖振响应及风荷载,以某单悬臂观景廊桥为背景,通过风洞试验对结构的静力三分力系数以及不同风参数下的抖振响应进行了测量,并将结构横桥向最大等效风荷载规范计算值与试验值进行比较. 结果表明:山体地形对结构三分力系数及抖振响应影响较大,二者最大值均未出现在常规风向角;结构抖振响应随风速的增大而增大,受小幅风攻角的影响较小;横向抖振响应受一定程度紊流度变化的影响不敏感,但竖向及扭转响应整体随紊流度的增加呈明显增大趋势,在紊流度增大约40%的情况下二者均增大15%左右;竖向抖振响应随紊流积分尺度的增大(增幅约20%)而增大,增幅在9%左右,但积分尺度对横向抖振响应几乎无影响,对扭转响应的影响随风攻角的不同有较大差异,随着积分尺度的增大,3° 攻角下扭转响应增幅约为8%,0° 攻角其受积分尺度的变化影响较小;相比横桥向最大等效风荷载试验值,利用桥梁规范计算的结果偏于保守,静阵风系数的取值有待修正.   相似文献   

13.
采用平转施工的T形刚构桥梁在转体之前,拆除施工支架,处于大悬臂状态,结构刚度较小,在风的作用下稳定性较差.结合内蒙古集宁市的京包铁路分离式立交桥,桥址处多阵风且风速较大,分析该转体施工T形刚构桥梁的抗风性能,通过对该桥进行了抖振时域分析,得到其位移时程结果.大悬臂T构的结构横向刚度最小,位移最大.结果表明结构在风荷载的作用下较安全,但风荷载的作用不可忽略.  相似文献   

14.
为动态仿真与评估运营阶段风和随机车流联合作用下大跨钢桁悬索桥伸缩缝纵向变形, 建立了风-随机车流-钢桁悬索桥分析系统; 基于已有单主梁风-车-桥耦合振动分析系统, 引入弹簧单元模拟伸缩缝, 并从车-桥耦合关系和钢桁梁横断面风荷载精细化加载2个方面将分析系统从单主梁提升为梁格法; 基于监测数据仿真重现了交通流荷载, 采用建立的分析系统计算了一座典型大跨钢桁悬索桥伸缩缝在随机车流作用下的动态位移时程响应, 获取并验证了累计位移与交通流质量的相关关系; 以滑动支承耐磨材料厚度为评估指标确定了伸缩缝累计位移临界值, 评估了伸缩缝的正常工作寿命; 在不同风速和随机车流作用下对伸缩缝纵向变形性能进行了参数敏感性分析。分析结果表明: 伸缩缝在随机车流作用下的时位移极值远小于设计允许伸缩范围-880~880 mm; 伸缩缝累计位移与其对应时段内的交通流荷载具有正相关性; 在风与随机车流联合作用下, 风速小于15 m·s-1时, 影响伸缩缝纵向变形的主要荷载因素为随机车流, 风速大于15 m·s-1时, 主要荷载因素为风荷载; 伸缩缝时位移极值与时累计位移随风速的增大均呈增大趋势; 当风速增大至20 m·s-1时, 风荷载产生的伸缩缝纵向变形近似为车流荷载下的2倍; 建立的风-随机车流-钢桁悬索桥分析系统可为运营荷载下伸缩缝纵向变形的动态仿真与性能评估提供数值分析平台。   相似文献   

15.
重庆万豪国际会展大厦风效应试验研究   总被引:1,自引:0,他引:1  
重庆万豪国际会展大厦是高度达303m的超高层钢结构,其基阶频率仅0.1234Hz,为了准确确定风荷载及其风致响应,对其进行了风致安全性及舒适性评估.采用风洞模型试验方法,对场地大气边界层进行了模拟;通过测压模型风洞试验测量风压系数的分布,并计算静风荷载;用气动弹性模型测量风致响应,包括大厦顶部的位移响应、加速度响应和角速度响应,并计算动风荷载.此外,还讨论了周边环境建筑对其风效应的影响.研究表明,周边建筑环境对大厦的静力和动力风荷载均有较大影响,在设计风速范围内不会产生驰振现象,其顶部加速度和角速度均小于限值,舒适性满足规范要求.  相似文献   

16.
为研究风荷载作用下高层建筑动力响应对其顺风向等效静力风荷载的影响,基于结构风致响应动力学理论、脉动风速功率谱密度函数与相干函数的维纳辛钦关系及脉动风速准定常关系,采用随机振动振型分解方法对高层建筑的风致响应进行了研究. 首先,对高层建筑的平均风响应、背景风响应和共振风响应进行了理论分析,并推导出了沿结构高度分布的高层建筑顺风向等效静力风荷载理论计算公式;其次,通过对理论公式中各参数对计算结果的影响进行分析,提出了便于实际应用的高层建筑顺风向等效静力风荷载简化计算方法;最后,设计了4个典型高层建筑算例模型,并与阵风荷载因子法(gust load factor method,GLF)和惯性风荷载法(inertial wind load method,IWL )进行对比,研究了本文方法的可靠性和有效性. 研究结果表明:当结构高度小于250 m时,3种方法所计算出的分布风力、剪力响应和弯矩响应偏差要大一些,GLF法计算结果最大,IWL法的计算结果最小,本文方法介于二者之间;当结构高度大于350 m时,分布风力的偏差在15%以内,对于剪力响应和弯矩响应的偏差在10%以内;本文方法与IWL法在剪力响应方面的差异率在–1%~18%之间,与GLF法的差异率在–12%~5%之间;本文方法与IWL法在弯矩响应方面的差异率在–6%~10%之间,与GLF法的差异率在–16%~5%之间.   相似文献   

17.
基于AR模型和接触网结构特性,建立了具有时间和空间相关的接触网脉动风场,由模拟的风速时程获得作用于接触网的风荷载;建立接触网三维有限元模型,研究了其模态、静态风偏和风振响应,并对位移响应进行了频谱分析.分析结果表明:垂向风速相对顺风向风速较小,采用Davenport风速谱可建立接触网脉动风场;接触网在30 m·S-1的横向平均风和自然风作用时,接触线跨中节点横向位移的最大值分别为109.11 mm和312.49 mm,平均风荷载下计算得到的接触线横向位移减小了186.40%;接触网在横向自然风作用时,接触线横向和垂向振动位移同时产生,接触网第1阶垂向和横向振动频率分别为0.973 Hz和1.384 Hz,在这2阶频率处产生了接触网结构与风荷载的峰值共振;接触网在30 m·S-1的自然风作用时,由风荷载引起的应力分别占接触线和承力索总应力的10.77%和27.40%,因此,需采用脉动风荷载进行接触网的风偏和强度设计.  相似文献   

18.
为研究跨海桥梁所受风、浪、流环境荷载及其组合影响,采用国际结构安全性联合委员会(JCSS)提出的组合模型将风浪流荷载进行组合,并考虑了风浪流要素之间的相关性,对于风浪相关性采用了耿贝尔联合概率模型,并通过风海流实现了水流与风场的联合. 以某跨海大桥为工程背景,分析了不同荷载组合对主梁动力响应的影响及其机理,并讨论了荷载组合中参与荷载时段和不同波浪场对计算结果的影响. 研究结果表明:风、浪、流荷载对主梁位移响应影响较大,以风为主要荷载的JCSS组合比以波浪和水流为主要荷载的JCSS组合跨中位移响应偏大20%~30%;随机波浪和桥梁横向基阶模态对跨中横向响应贡献显著;主梁不同位置的位移响应受同一环境要素的影响程度不同,主跨跨中响应主要受风荷载的影响,塔梁结合处主梁响应主要受波浪荷载的影响;波浪场采用规则波模拟会低估主梁跨中位移响应.   相似文献   

19.
桥梁转体施工中容易受到环境风的影响,脉动风荷载是施工控制的关键。基于AR(P)线性滤波法,结合环境风的空间相关性,依据转体结构特征确定分析参数,利用Davenport脉动风谱,在matlab软件中实现对某转体桥梁脉动风速数值模拟,最终得到脉动风速时程曲线和功率谱曲线。不仅可以为转体桥梁风致振动分析提供数据参考,还能为今后转体桥梁抗风设计与应用研究提供借鉴。  相似文献   

20.
随着拱桥跨径的不断增大,其非线性效应愈加显著,因此,等效静力风荷载作用下钢拱桥的极限承载力分析引起了广泛的关注。以主跨450 m 的广东省肇庆西江大桥为例,利用ANSYS 有限元软件研究结构极限承载力分析中的非线性效应、静风失稳风速以及等效静力风荷载作用下拱桥的极限承载力。结果表明:与几何非线性相比,材料非线性对拱桥极限承载力的影响较大;静力风荷载会对拱桥的活载稳定系数产生较大的影响。在风速较大区域设计建造大跨度钢拱桥时,应兼顾考虑几何非线性和材料非线性对拱桥极限承载力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号