首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
运用LS-DYNA软件开展了滚石撞击下双柱式桥墩动力响应和损伤形式的仿真分析。由撞击力时程曲线可见,撞击力最大值随滚石初始动能增大而增大,撞击力曲线的最大值和撞击接触面积相关。由滚石对桥墩的撞击损伤研究表明:滚石撞击下桥墩的损伤形式与损伤量与滚石的动能、速度和撞击截面密切相关,在滚石速度与撞击接触面积相同的情况下,桥墩的损伤量随滚石的动能增加而增大;撞击面面积越小,损伤越容易在碰撞撞击面正面发生。  相似文献   

2.
为研究落石撞击山区双柱式桥梁的动态响应与损伤,以西部山区一座双柱式桥梁为研究对象,采用LS/DYNA建立了高精度三维实体碰撞有限元模型,分析了落石参数对桥梁动态响应及损伤的影响,并将桥墩撞击力时程曲线与各个国家规范给出等效撞击力计算公式进行对比和讨论.研究结果表明:落石撞击桥墩中部造成的损伤相比其他位置大;落石速度对于撞击力峰值的影响更为显著,而落石质量大小对桥墩被撞击时的撞击力持续时间及最大水平位移影响更加显著;桥墩损伤程度是随着落石动能增加而增加,而落石质量大小对桥墩损伤程度更为显著,且落石质量增加使桥墩的损伤形式更偏向于斜截面受剪;我国《公路路基设计规范》和《铁路工程设计技术手册》撞击力计算公式计算结果偏小,设计不太安全,日本道路公团公式的计算结果与数值模拟的撞击力峰值吻合良好,建议工程设计采用.  相似文献   

3.
为了探究钢筋混凝土桥墩在重型车辆撞击下的安全性能, 建立了重型车辆-桥墩碰撞精细有限元模型, 研究了撞击速度、桥墩直径、上部结构边界条件和货物高度对桥墩破坏模式和内力分布的影响; 分析了不同工况下的车辆碰撞力特征, 并基于车辆初始动能耗散特点提出了碰撞力简化模型。分析结果表明: 重型车辆碰撞过程可以分为保险杠、发动机和货物撞击桥墩3个阶段, 碰撞力在前2个阶段主要集中在0.9 m高度处, 而在第3个阶段主要分布在2.7 m高度处; 在重型车辆撞击下, 不仅桥墩端部会出现严重损伤, 碰撞部位附近也可能发生严重的局部冲剪破坏; 由于忽略了碰撞荷载的动力效应和车辆与桥墩的耦合作用, 采用《公路桥涵设计通用规范》 (JTG D60—2015) 中建议的等效静力设计方法难以获得桥墩的实际撞击响应; 撞击速度对桥墩内力和碰撞力的影响最显著, 货物高度的不同会改变碰撞力的空间分布, 但不会影响桥墩的最大内力响应; 重型车辆的初始动能存在6.5 MJ的阈值, 当初始动能小于该阈值时, 车辆发动机和保险杠的碰撞作用对桥墩动力响应起主导作用, 反之, 后部货物的碰撞作用控制碰撞力峰值; 碰撞力简化模型和精细车辆模型预测所得桥墩最大内力响应的相对误差在8%以内, 且计算耗时从6~7 h缩短到4 min。   相似文献   

4.
利用有限元方法对滚石与桥墩的撞击进行了初步研究,重点分析了滚石与桥墩发生正碰的情况.运用大型结构分析程序,研究了碰撞过程中桥墩的动力响应,得到了撞击力随滚石质量和速度的变化关系.  相似文献   

5.
撞击荷载下耗能装置缓冲吸能特性研究   总被引:1,自引:0,他引:1  
在桥墩表面设置耗能装置可提高城市立交桥桥墩和高架桥桥墩抵抗车辆撞击的能力。通过对配置耗能装置桥墩试件侧向撞击的试验研究,分析了耗能装置缓冲、吸能效果及其对桥墩动力响应的影响。研究表明,设置合理的耗能装置能够降低撞击力,达到良好的缓冲效果;同时能够吸收部分撞击能量降低桥墩的动力响应。撞击力可降低49%,跨中受拉钢筋峰值应变可降低63%,跨中位移峰值可降低75.6%。  相似文献   

6.
随着交通运输业迅速发展,船舶航线越来越密集,跨江、跨海大桥数量逐年上升,发生船桥碰撞事故概率增加.采用非线性有限元仿真方法,对6600DWT直立艏货船和方形桥墩碰撞过程进行数值模拟,研究船桥碰撞能量转换关系,分析船舶航速、船艏撞深、船舶应力应变等船舶结构动力响应随时间变化规律.选取船舶航速、船舶载况、碰撞角度、横向偏移距、桥墩截面形式5个因素,设置多组工况,分别研究各因素对船桥碰撞力及碰撞接触时间的影响.研究结果表明:船桥碰撞事故造成船舶碰撞接触区域出现明显塑性变形,其撞击力与船舶航速和载重呈正相关,而与碰撞角度和横向偏移距呈负相关,且与桥墩截面形式存在一定相关性.研究结果再现了船桥碰撞发生全过程,揭示出船桥碰撞损伤局部性以及各因素影响下的船撞力差异.  相似文献   

7.
为获得列车脱轨撞击荷载,分析列车撞击时盾构隧道的动力响应,建立了列车编组的三维撞击有限元模型,探讨了不同列车编组、不同撞击速度和撞击角度下列车近似撞击力时程曲线,分析了列车撞击力最大值和撞击时间与列车撞击速度和角度的关系,并将典型撞击荷载用于分析不同厚度二次衬砌管片衬砌的动力响应.结果表明:列车编组数量一定时,列车斜向撞击力最大值随撞击速度和撞击角度增大而增大;当撞击角度增大到7.5后,撞击力作用时间随撞击速度增大而延长;根据列车撞击力最大值出现时刻不同,可将撞击力时程曲线划分为2类特征曲线,其中第1类特征曲线(撞击瞬间撞击力达到最大)总体上符合高斯多峰拟合公式,可用10个参数近似拟合.二次衬砌厚度增大能有效减小管片衬砌应力、速度、加速度等动力响应以及拉、压损伤区域.   相似文献   

8.
桥梁船撞通常造成很大的风险,其撞击过程是一个复杂瞬态动力过程,现行规范将这种冲击作用以等效静态力的形式施加到桥梁结构上,计算撞击效应。基于一座内河航道上施工中的桥梁受到船只撞击,计入几何和材料非线性,分析其撞击力和撞击损伤效应。并对比研究不同初速度下的数值分析结果、不同规范的等效静力及其与撞击速度的关系,探讨桥梁船撞作用力。在此基础上,讨论了内河航道船舶等效撞击力,在现有规范下,建议了桥梁设计撞击力的参照公式。  相似文献   

9.
京航运河行船和桥墩相撞的事故时有发生,造成严重的人员生命和财产损失,对运河桥梁实施安全防护势在必行。为了合理设计运河桥墩防船舶碰撞设施,该文在相关研究和应用成果的基础上,分析探讨了防撞设施的设计原则、布局规划、最大撞击力的计算方法和船舶设计碰撞速度、设计碰撞角度以及水动力影响系数等关键问题,可供今后设计运河桥墩的防撞设施参考。  相似文献   

10.
为了研究碰撞对山区高墩桥动力响应的影响,以某一大跨度高墩桥体系为原型,充分考虑了碰撞过程中的刚度变化、能量耗散以及桥墩的非线性行为,基于OpenSess平台建立了两种典型桥跨结构的弹塑性动力分析模型.在此基础上,利用所选的天然地震波和人工地震波对比分析了碰撞效应对山区高墩桥弹塑性动力响应的影响.研究结果表明:碰撞会对高墩桥结构的动力响应产生较为明显的影响,特别是场地条件较差时,其最大改变率为15.86%,桥墩与主梁的连接方式会进一步改变碰撞对桥墩变形的影响程度;相邻结构动力特性差异越大,高墩桥体系发生碰撞的概率就越大,但碰撞次数的增加可能会对桥墩变形起到限制作用,降低桥墩的响应,在确定山区高墩桥体系相邻结构周期比时,既要考虑相邻结构动力特性差异对碰撞概率的影响,还应考虑其对碰撞效应的影响;高墩桥的梁-桥台碰撞主要受地震动作用大小的影响,地震动的强度和相邻结构动力特性的差异均会对梁-梁碰撞产生影响,在对高墩桥进行减撞防撞设计时,应针对不同的碰撞位置采取不同的措施.   相似文献   

11.
桥梁在船舶碰撞时受到的动力荷载和响应是复杂的动力非线性问题。通过冲击动力学理论,利用有限元软件AN-SYS/LS-DYNA对忠县长江大桥在高低水位下的船舶撞击进行模拟,对船舶在高低水位下的碰撞情况进行对比,并将碰撞力数值与各种规范的数值进行比较,可为桥墩防撞系统的设计提供参考。  相似文献   

12.
为了研究碰撞对山区高墩桥动力响应的影响,以某一大跨度高墩桥体系为原型,充分考虑了碰撞过程中的刚度变化、能量耗散以及桥墩的非线性行为,基于OpenSess平台建立了两种典型桥跨结构的弹塑性动力分析模型.在此基础上,利用所选的天然地震波和人工地震波对比分析了碰撞效应对山区高墩桥弹塑性动力响应的影响.研究结果表明:碰撞会对高墩桥结构的动力响应产生较为明显的影响,特别是场地条件较差时,其最大改变率为15.86%,桥墩与主梁的连接方式会进一步改变碰撞对桥墩变形的影响程度;相邻结构动力特性差异越大,高墩桥体系发生碰撞的概率就越大,但碰撞次数的增加可能会对桥墩变形起到限制作用,降低桥墩的响应,在确定山区高墩桥体系相邻结构周期比时,既要考虑相邻结构动力特性差异对碰撞概率的影响,还应考虑其对碰撞效应的影响;高墩桥的梁-桥台碰撞主要受地震动作用大小的影响,地震动的强度和相邻结构动力特性的差异均会对梁-梁碰撞产生影响,在对高墩桥进行减撞防撞设计时,应针对不同的碰撞位置采取不同的措施.  相似文献   

13.
为研究泥石流中的块石与桥墩碰撞后的动力响应特性,基于有限元动态接触方法,对三维实体桥墩模型在泥石流作用时的动态响应进行详细研究。研究表明:流体作用下,块石对桥墩的冲击作用不容忽视;墩顶位移随流体流速、压力增大而不断增大;在山区桥墩设计时,应考虑桥墩在偶遇泥石流下的桥墩的抗冲击能力与墩顶上部的变形能力。  相似文献   

14.
以赣江某跨桥梁为研究对象,利用有限元软件ANSYS进行船桥碰撞建模分析,研究船舶以不同的速度及质量撞击桥墩的动态响应。结果表明:桥墩的被撞区和桥墩底部属于危险区域,在该区域内应力在极短的时间内迅速增大,而船舶的最大应力发生在碰撞区和船艏拐角处,尤其是船艏碰撞处迅速产生巨大的变形;随着船舶航行速度及载重量的不断增大,撞击力增长的速度、最大值以及船舶和桥墩的应力均明显增大,但不成线性或倍数增加。  相似文献   

15.
为了研究碰撞对山区高墩桥动力响应的影响,以某一大跨度高墩桥体系为原型,充分考虑了碰撞过程中的刚度变化、能量耗散以及桥墩的非线性行为,基于OpenSess平台建立了两种典型桥跨结构的弹塑性动力分析模型.在此基础上,利用所选的天然地震波和人工地震波对比分析了碰撞效应对山区高墩桥弹塑性动力响应的影响.研究结果表明:碰撞会对高墩桥结构的动力响应产生较为明显的影响,特别是场地条件较差时,其最大改变率为15.86%,桥墩与主梁的连接方式会进一步改变碰撞对桥墩变形的影响程度;相邻结构动力特性差异越大,高墩桥体系发生碰撞的概率就越大,但碰撞次数的增加可能会对桥墩变形起到限制作用,降低桥墩的响应,在确定山区高墩桥体系相邻结构周期比时,既要考虑相邻结构动力特性差异对碰撞概率的影响,还应考虑其对碰撞效应的影响;高墩桥的梁-桥台碰撞主要受地震动作用大小的影响,地震动的强度和相邻结构动力特性的差异均会对梁-梁碰撞产生影响,在对高墩桥进行减撞防撞设计时,应针对不同的碰撞位置采取不同的措施.  相似文献   

16.
连续刚构桥船桥碰撞的计算模型和动力响应   总被引:1,自引:1,他引:0  
以连续钢构桥为例,基于碰撞理论和边界等代原理,研究了船桥碰撞的计算模型;基于Timoshenko剪切变形理论和Hamilton能量泛函变分原理,考虑桥墩的弯曲、剪切、地基效应和上部结构的影响,导出了碰撞体系的动力微分方程;采用积分变换方法,对碰撞体系的控制微分方程和边界条件进行Laplace变换,在频域内求得波动解;运用Crump逆变换方法,使用数学软件Matlab编程进行数值反演,得到时域内的撞击力和各种动力响应。  相似文献   

17.
随着三峡库区水位的提高,万州长江大桥拱圈存在船舶撞击的风险。结合万州长江河段航运情况,选择5种船型建立空间有限元仿真模型,对万州长江大桥桥墩、拱圈的船舶撞击作用进行了研究。结果表明:5 000 t船舶对大桥拱圈、桥墩的撞击力最大、作用时间最长,桥墩相对于拱圈受船舶撞击力的危害更严重;大桥拱圈、桥墩的极限侧抗力分别为2 000,350 t,库区175 m水位蓄水后,大桥拱圈、桥墩可承受极限撞击船舶吨位分别为1 094,115 t。  相似文献   

18.
以UHPC连接预制拼装高架桥墩为研究对象,基于LS DYNA软件对车辆撞击桥墩进行非线性有限元分析.通过UHPC试块轴压试验与落锤试验得到CSCM本构模型;并分析了不同撞击速度下预制拼装桥墩与整体现浇桥墩撞击力、变形发展规律及内力响应的异同;最后通过改变接缝钢筋直径,接缝处摩擦系数及下接缝处UHPC高度等关键参数进一步对预制拼装桥墩耐撞性能进行优化.结果 表明:撞击后预制拼装桥墩的振动周期明显比整体现浇桥墩要短;拼装柱裂缝发展由墩底杯口上端向撞击背面延伸,整体柱则是从墩底延伸;两个桥墩的墩底易出现剪切破坏,被撞击处易发生弯曲破坏,其中拼装柱墩顶可能还会发生弯曲破坏,整浇柱墩顶易出现剪切破坏,拼装柱和整体柱抗撞性能差异不大;此外提高UHPC高度,相较于接缝钢筋直径和接缝处摩擦系数,对拼装柱耐撞性能提升最为明显,桥墩损伤破坏和动力响应也明显下降,可有效提升该桥墩的耐撞性能.  相似文献   

19.
结合工程实例介绍了季冰性河流流冰对桥梁基础的动力作用。通过对桥墩在浮冰撞击下水平位移的观测,提出了计算撞击力的方法。  相似文献   

20.
汽车碰撞桥墩撞击力计算   总被引:1,自引:0,他引:1  
针对频发的车桥撞击事故,依据钢筋混凝土圆形桥墩落锤冲击试验装置,建立车桥撞击动力学分析模型;基于达朗贝尔原理建立的车桥一维碰撞的单自由度、双自由度模型求解撞击力;分析结果表明:计算结果与试验值基本吻合,峰值及平均值误差分别为-15.4%和14.5%。为桥梁防撞设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号