首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地铁盾构隧道施工对邻近管线的影响分析   总被引:1,自引:0,他引:1  
为了获得地铁隧道盾构法施工对临近地下管线的变形和应力的影响规律,以大连地铁二号线某区间隧道工程为背景,利用FLAC3D软件对隧道盾构施工引发的地层变形所导致的管线变形、应力进行了精细模拟,得到双线隧道施工完成后横向地表沉降槽不符合叠加理论,存在少量差值,双线隧道贯通时最大沉降值为11.26 mm,盾构隧道地层体积损失率为1.46%,地表沉降槽宽度系数为0.81.按两条隧道互不影响沉降叠加,最大沉降值为11.93 mm;右线隧道贯通时,燃气管最大沉降值为10.1 mm,左线隧道贯通时,燃气管最大沉降值为11.4 mm,最大沉降位置向左有少量偏移.随着右线盾构掘进施工,污水管道沉降逐渐增大,最大沉降变形为5.45 mm,线隧道贯通后,污水管线最大沉降值为9.79 mm.整个过程两管均处于安全状态.  相似文献   

2.
以苏州地铁5号线某区间盾构隧道为研究对象,以施工期间掘进参数及隧道地表实测监测数据为依据,分析盾构掘进工程中地质条件、土仓压力、推进速度等因素对地表变形的影响。结果分析表明:盾构掘进面前方一倍洞径处,地表易隆起,地表隆起量随着推进速度、土仓压力、同步注浆压力的增大而增大;随着盾构掘进,地层受施工扰动及水土损失影响,地层开始出现沉降,并不断增大,在距离盾尾两倍洞径位置附近趋于稳定。文中针对盾构在富水砂层、粉土、粉质粘土段掘进存在的问题,提出了地表变形控制措施。  相似文献   

3.
盾构隧道施工引发的地层沉降一直是困扰工程界的难题。以北京地铁14号线方庄—十里河站区间双线隧道为背景,构建三维数值计算模型对先后线路隧道开挖和注浆过程进行分析。采用修正的剑桥模型计算地层土体,采用刚度迁移法模拟盾构掘进过程和同步注浆的施工过程。分析了壁后注浆压力、注浆量、浆液随时间固结硬化及先后掘进施工对地表变形的影响。结果表明:合理确定注浆量和注浆压力能够有效控制地表沉降,考虑浆液硬化的沉降计算结果要大于不考虑硬化因素的结果;在最优注浆压力和注浆量的条件下,用体积应变法模拟注浆并考虑浆液硬化的计算结果更与现场监测值非常吻合;后期线路施工不仅引起地层进一步沉降,还增大了先施工隧道的结构变形。  相似文献   

4.
以某典型软土地层中隧道侧穿桩基为例, 采用数值模拟方法开展了隧道开挖对不同位置处桩基的影响程度分析研究。 结果表明: 隧道开挖引起地表的竖向和水平位移显著影响的区域分别分布在距离隧道中心 0 ~ 3D 和 1D ~3D (D 为隧道外径) 范围内, 其沉降曲线与经验公式的一致性验证了数值模型的可靠性; 同时, 桩顶沉降受开挖影响的区域与地层显著沉降区基本一致; 随着桩基与隧道中心线的距离增大, 桩基的安全区范围逐渐增大而警戒区范围逐渐缩小; 对比桩身沉降和水平位移, 可考虑采用桩顶位移作为桩基变形的控制指标, 当盾构掘进通过桩基且与其净距达到 10L (L 为管片宽度) 左右时, 隧道开挖对桩基变形的影响最明显, 可为现场盾构施工中的变形控制提供参考。  相似文献   

5.
在富水软弱地层中,如何预测及控制地层扰动引起的长期固结沉降一直是盾构隧道施工面临的重要问题之一。基于FEM-FDM水土完全耦合理论,利用同济曙光三维有限元软件,分析了珠海某隧道软土区段局部加固对盾构施工引起的土体工后长期固结沉降的影响规律。数值计算结果表明:地层及隧道拱顶长期沉降槽随埋深增大逐渐变深变窄;盾构隧道基底加固分别使地表及隧道拱顶的最大沉降量减小34.2%和27%,且使二者更快趋于稳定,但对隧道结构变形的影响并不明显;加固会使隧道竖向应力有所增大,但不会改变其沿隧道轴向的分布规律;有基底加固时隧道拱腰处的超孔隙水压力消散更快,使得固结沉降更快趋于稳定。  相似文献   

6.
依托某市轨道交通九号线某区间工程,运用Midas GTS有限元分析软件建立数值分析模型,将整个隧道掘进过程分为10个施工阶段,计算施工过程中的地表沉降,分析不同掘进距离下地表的沉降量,并选取地表5个测点进行位移变形结果分析。结果表明:在隧道拱顶位置处产生沉降区域,在隧道拱底产生隆起现象,拱顶处的最大沉降值随着盾构掘进距离的增加而增大,盾构掘进到达地表监测点附近时,该监测点的地表沉降值变化速度较快。  相似文献   

7.
杭州地铁机场快线隧道采用盾构法施工,其中最大埋深区间隧顶埋深达到40 m以上,最深位置需穿越上软下硬地层,且需下穿保护区建筑物.因隧道上部圆砾地层和砂层储水丰富且渗透性强,土压盾构掘进随着埋深越来越深,水压也逐渐增大,掘进出现地下水干扰导致螺旋机喷涌,容易超方造成地表建筑物沉降和隧道被淹埋等重大风险.介绍了施工中采用的...  相似文献   

8.
盾构隧道掘进会对周围土体产生扰动,进而影响其周边建筑物。基于土体损失计算理论,研究了盾构掘进造成的浅基础建筑物的内力变化与沉降变形,建立了浅基础建筑物结构、基础和地基协同作用的力学模型并推导了其解析解,进一步与实测变形值进行对比,吻合度较好。研究表明:盾构隧道掘进区内,浅基础建筑物易整体出现倾斜;随着开挖面的靠近,框架结构物基础梁的弯矩和剪力逐渐增大,其最大值出现在开挖面到达该建筑物正下方附近时。为了更好地控制盾构掘进对邻近浅基础框架结构物的影响,施工中需加强对建筑物首尾沉降差及倾斜率的监测。  相似文献   

9.
为研究土压平衡式盾构机穿越复合地层过程中,不同盾构掘进参数对地表沉降值和地层损失率的影响,依托湖南商学院站至白鸽咀站区间盾构工程已有的施工沉降监测数据,利用Peck公式反推得到盾构施工在此类地层条件下的地层损失率,并通过三维有限元数值模拟分析了盾构各参数对地表沉降值和地层损失率的影响程度.研究结果表明:在掘进推力增大时...  相似文献   

10.
针对地铁盾构施工的地层变形特征,分析引起地层变形的因素和变形机理,介绍地层变形预测分析方法,结合广州地铁具体实例,对地铁盾构隧道施工中地层变形进行了预测和分析,提出了盾构前方的隆陷控制、盾构通过时的沉降、固结沉降的控制等控制地层变形措施。  相似文献   

11.
石家庄市城市轨道交通1号线体育场站~北宋站区间隧道穿越粉细砂地层,施工采用土压平衡盾构掘进技术,对始发洞口进行了双管旋喷桩加固,掘进过程中优化了盾构推进速度、土仓压力、出土量、推力及注浆压力等主要技术参数,保证了施工安全,区间隧道顺利贯通;采用同步注浆和二次注浆措施及优化的掘进施工参数控制了掌子面的稳定和地表沉降。工程实践证明土压平衡盾构也适用于粉细砂地层的区间隧道施工。  相似文献   

12.
地铁特殊地段使用超大异型断面隧道,因其结构较单管和双管隧道复杂,隧道断面有其自身的特殊性,因此,有必要开展大断面隧道盾构法施工引起的地表沉降监测方面的研究,以便为宁波市地铁后续盾构隧道工程的设计、施工积累经验。本文针对大断面隧道盾构法施工的地表沉降问题进行了现场监测数据分析,结果表明:大断面盾构掘进在施工期间对地表沉降影响较大,在地质较差地段,影响更为明显;大断面盾构施工期间进行二次注浆可明显抑制地表沉降,但在地层比较薄弱或被其他施工扰动过的地段应严格控制注浆量和注浆压力;大断面盾构施工后期沉降稳定时间远比单圆盾构后期稳定时间长,后期沉降影响更为显著。  相似文献   

13.
土压平衡盾构隧道引起的地表沉降规律研究   总被引:1,自引:0,他引:1  
盾构法作为地铁隧道施工的一种主要施工方法已在我国得到广泛的应用,由施工引起的地层移动和地表沉降是盾构隧道设计和施工中备受关注的问题。以广州地铁3号线某盾构区间隧道为研究对象,运用三维有限差分法对盾构施工过程中影响地面沉降的因素——土舱压力、盾尾注浆压力和地层损失率进行较为系统的研究,可得出结论:影响盾构隧道地表沉降最大的因素为地层损失和注浆压力,增大土舱压力对降低隧道地表沉降的作用非常有限。  相似文献   

14.
为研究盾构隧道施工扰动对上跨桩板结构的影响,以厦门地铁4号线浅埋盾构开挖段为背景,利用数值方法建立软土地层中盾构动态开挖模型,结合现场实测,总结了桩板结构各部件在盾构扰动作用下的变形响应,进一步分析了结构参数优化在抵抗扰动变形方面的效果。结果表明:桩身水平变形随盾构开挖逐渐增大,刀盘驶过目标桩1.0D时达到最大值,随后因地层损失出现变形回弹;在刀盘到达目标断面前后,盖板竖向变形表现为先隆起后沉降,并在开挖空间上方出现沉降槽,刀盘驶过断面2.0D时,结构变形保持稳定;桩长不变,适量增加桩径、缩小桩间距,可减小桩身变形量,增加桩长将有效降低桩端变形,从而使整体变形得到控制;盖板厚度增大时,可起到降低其竖向变形的作用。  相似文献   

15.
以杭州地铁 9 号线一期工程下穿沪杭铁路框架桥为背景, 建立盾构下穿施工三维数值模型, 分析软弱地层环境下地铁盾构隧道下穿施工对铁路框架桥的影响, 提出多种确保铁路安全运营应对措施, 并在施工过程中进行现场监测。 数值分析表明, 盾构隧道下穿施工中铁路框架桥最大沉降量为 6. 72mm, 进行洞内注浆加固后, 最大沉降量降为 4. 76mm, 说明在软弱地层环境下及时进行洞内注浆对抑制铁路框架桥的沉降变形具有显著效果; 监测结果表明, 盾构右线施工对框架桥沉降变形的影响大于左线, 铁路框架桥最大沉降达到 6. 9mm, 采取应对措施及时进行洞内二次注浆, 可有效控制框架桥的持续沉降变形, 铁路框架桥处于安全可控状态。  相似文献   

16.
以苏州市吴中区的平行隧道施工为工程依托,利用有限元软件ABAQUS对盾构始发过程进行了仿真模拟,对地表沉降、地层位移、土体应力和围护结构应力进行了对比分析。模拟表明:土体强度对抵抗地层扰动能力具有有效性;土质强度越大,隧道结构在Y轴方向所受的地应力越小,这意味着管片受土压力越小,则隧道结构更为稳定;主动土压力随着盾构掘进深度的增加而增大,且伴随着主动土压力的增加,围护结构应力值也相应增大。  相似文献   

17.
针对在盾构隧道施工中经常出现的管片上浮问题,以南昌轨道交通4号线泥水盾构过江隧道为工程依托,通过数理统计方法对泥水盾构穿越不同地层时管片上浮量进行归纳分析,探讨地层参数以及盾构掘进参数对管片上浮的影响规律。研究结果表明:在全断面砂层中掘进,管片上浮量小且上浮值变化稳定;而当进入上软下硬地层和泥质粉砂岩层,管片上浮量急剧变化,尤其是在过江段中风化泥质粉砂岩中掘进,管片上浮量最大。考虑盾构掘进参数单因素影响,随着注浆压力、泥水压力和盾构推力的增大,管片上浮量均会出现增大,而掘进速度的变化对施工期间管片上浮影响较小。在掘进过程中需要结合地层特性对管片上浮影响并且对主要掘进参数进行实时调整,在一定程度上可以实现对管片上浮的有效控制。  相似文献   

18.
为研究盾构下穿既有盾构隧道时施工参数的合理取值,以北京南水北调东干渠工程盾构隧道穿越既有地铁盾构隧道施工为依托,通过对既有隧道沉降的数值模拟和现场监测数据、盾构施工参数的分析,讨论了既有左右线隧道沉降存在差异的原因,总结了控制沉降的施工参数经验,阐述了既有隧道受穿越施工扰动的沉降规律,提出并验证了盾构隧道病害整治的方法.研究结果表明:受盾构施工参数的影响,既有左线隧道沉降23.9 mm,而右线仅沉降4.8 mm,沉降差异明显,但规律基本一致;盾构施工时,土仓压力调整级差不宜大于0.005 MPa,严格控制同步注浆压力在0.50 MPa,二次补浆压力在0.20~0.35 MPa,曲线段适当减缓掘进速度;已投入运营的地铁维修作业时间短,宜通过化学注浆治理管片接缝和螺栓孔处的渗漏水,压力注胶充填树脂治理道床裂缝.   相似文献   

19.
针对淤泥填海地层中的近距离交叠隧道工程,利用三维有限元软件PLAXIS数值模拟,计算了新建盾构隧道施工对周边环境的影响。施工将引起的临近既有线上浮14 mm,造成地表沉降变形69 mm,无法满足盾构施工变形控制要求。为有效控制盾构施工对周边环境的影响,必须对淤泥填海地层进行加固。采用二维有限元法分析了不同加固范围对隧道附加变形的影响,提出了淤泥填海地层的针对性加固方案:隧道两侧3 m范围内的淤泥填海地层采用高压旋喷桩全深度加固。经计算,加固条件下既有线上浮变形和地表沉降较未加固条件分别能减小44%和86%。由此可知,在淤泥填海地层中,提出的加固方案能有效控制施工引起的环境变形,减小施工影响。  相似文献   

20.
针对富水卵漂石地层土压平衡盾构(EPBS)施工出土控制困难、掘进效率低问题,依托成都地铁某盾构隧道区间的现场实验段,对富水卵漂石地层中土压平衡盾构的实测关键施工参数进行了统计分析,并探索了与地层相适应的掘进参数以及提高掘进效率的途径。研究参数包括:出土量、土舱压力、贯入度、掘进速度等,研究结果表明:虽然富水卵漂石地层中的土压平衡盾构掘进易超出土,但通过适当减少土舱压力和增大贯入度能够减少超出土量,盾构法适用于该地层;改善地层可掘削性能和适当降低土舱压力是提高掘进速度有效方法,而增大总推力可能导致掘进速度下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号