首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
使用列车空气制动仿真方法获得空气制动系统特性,通过列车动力学仿真方法分析了3万t列车在多机车不同步条件下紧急制动和常用制动时车钩力,提出了大秦线3万t重载组合列车的可行性编组.分析了从控机车在各种滞后时间情况下,列车常用和紧急制动的最大车钩力的变化特点.研究结果表明:平道常用全制动工况下,从控二机车滞后时间比从控一机车...  相似文献   

2.
针对重载列车纵向冲动问题,根据气体流动理论和机车动力制动特性,开发并完善了重载列车空气制动系统与纵向动力学联合同步仿真系统.对制动系统传动效率与机车电制动系统模型进行修正,细化了模型,提高了仿真系统精度.根据神华线路机车操纵控制指令,仿真列车编组为2+1时的停车与运行工况,将仿真结果与神华线路运行试验结果对比.计算结果表明:在空气制动停车与运行工况时,各车位列车管和制动缸压强试验与仿真结果基本一致;在停车与运行工况且施加机车制动电流的情况下,车钩力变化试验与仿真结果基本一致,最大车钩力试验与仿真误差在0.7%~14.2%之间,吻合程度较高.  相似文献   

3.
针对重载列车纵向冲动问题,根据气体流动理论和机车动力制动特性,开发并完善了重载列车空气制动系统与纵向动力学联合同步仿真系统.对制动系统传动效率与机车电制动系统模型进行修正,细化了模型,提高了仿真系统精度.根据神华线路机车操纵控制指令,仿真机车编组为2+1时的停车与运行制动工况,将仿真结果与神华线路运行试验结果对比.计算结果表明:在空气制动停车与运行工况时,各车位列车管和制动缸压强曲线试验与仿真结果基本一致;在停车与运行制动工况且施加机车制动电流的情况下,车钩力变化试验与仿真结果基本一致,最大车钩力试验与仿真误差在0.7%~14.2%之间,吻合程度较高.  相似文献   

4.
使用空气制动与列车纵向动力学联合仿真系统,以MT-2型缓冲器为基础,通过改变缓冲器局部特性曲线,研究了快捷货车在紧急制动以及调车冲击工况下,缓冲器不同特性对列车纵向冲动的影响.结果表明,可考虑改进现有的MT-2型缓冲器,在20 mm或者30 mm以内的小行程范围内阻抗力平缓升至300 k N,以减小运行工况下的纵向冲动;在20 mm或者30 mm之后的大行程范围内可保持原有特性,使其具有足够的容量来确保调车作业.  相似文献   

5.
制动特性对列车纵向冲动的影响   总被引:1,自引:0,他引:1  
针对大秦线重载列车实际运用中出现的纵向冲动过大的问题,使用基于气体流动理论的空气制动特性仿真和基于刚体动力学的列车纵向动力学联合仿真方法,研究制动波传播的均匀性、制动波速、制动缸升压特性等制动系统特性对纵向冲动的影响.结果表明在制动波速不变条件下,制动波匀速传播与非匀速传播时列车纵向冲动水平基本一致;制动波速对列车车钩力影响显著,波速越高,车钩力越小;在列车制动能力不变的条件下,随着列车首尾车制动缸压强曲线开口度的收敛,纵向冲动明显降低,最大车钩力发生位置向列车后部移动.  相似文献   

6.
根据气体流动理论与多刚体动力学原理,建立了带有列尾装置的列车空气制动系统与列车纵向动力学联合仿真模型,计算了制动系统中空气流动瞬态数值解,获得制动系统特性,同步计算了列车纵向冲动。2万吨组合列车计算结果表明:全制动时安装列尾装置使最大车钩力降低54%,列车纵向冲动明显降低;列尾装置减压量越大,车钩力降低越明显,目前列尾装置减压量固定为50kPa,应根据线路经常使用的减压量确定更合理的值;列尾装置排气速度对车钩力影响较小;列尾装置滞后时间对车钩力影响微小;使用机车替代列尾装置,在大减压量制动时,车钩力将明显得到改善,减压量越小,机车与列尾装置作用效果越接近,当机车减压50kPa制动时,列尾装置与机车作用相同。  相似文献   

7.
研究了重载列车缓冲器的特性,分析了弹性胶泥型缓冲器和摩擦胶泥型缓冲器的结构及工作原理,以HXD1型机车、13A型车钩以及2种类型缓冲器为基础,建立了4节编组机车万吨级牵引列车动力学模型,研究了2种缓冲器静态与动态阻抗特性对重载列车相关动力学性能的影响.仿真结果表明:重载列车在长大下坡道进行循环制动时,摩擦胶泥型缓冲器无...  相似文献   

8.
两万吨列车纵向动力学性能预测   总被引:6,自引:2,他引:4  
开发了基于空气制动系统仿真的列车纵向动力学仿真程序.通过单车撞击试验获得缓冲器本构关系,通过仿真获得1+2+1编组两万吨列车制动特性.计算了两万吨列车车钩力分布特性,在受力特点上看,1+2+1编组列车在制动时可以看作中间分界的两段列车,每段列车前部受压,后部受拉.最大车钩力发生在列车的约1/8处,最大拉钩力发生在列车的约7/8处.后部机车滞后于前部机车制动,将使受压车辆数目增多,最大压钩力增加、发生位置后移,最大拉钩力变化不大.车钩间隙越大,车钩力越大.初速度越高,车钩力越小.  相似文献   

9.
针对列车车钩承压偏转行为,分析了机车结构参数与车钩转角之间的关系,通过建立由3节新型33t轴重C0-C0轴式重载机车与2组具有钩肩特性、缓冲器迟滞特性的圆销钩缓装置组成的列车动力学模型,研究承压工况下机车结构参数对车钩转角与列车运行性能的影响.计算结果表明:在列车车钩自由转角为8°时,承压时车钩的实际转角达不到8°,此时车钩钩肩不发生作用,稳钩力由机车二系止挡提供,车钩横向力全部传递至轮对,导致机车的轮轴横向力超标;提高二系止挡间隙或降低止挡间距等参数,可以增加车钩的转角,减小车钩横向力,降低轮轴横向力,提高列车的运行安全性;在重载机车车钩选型中,应该考虑机车结构参数与车钩自由转角的匹配关系.  相似文献   

10.
5000t重载列车制动动力学模拟分析   总被引:1,自引:0,他引:1  
重载运输的研究必须纳入系统工程的轨道,其中,计算机模拟技术是一种重要的研究手段。我们在全面研究列车动力学的基础上,建立了重载列车制动动力学的通用计算程序,可以对制动过程中各节车的位移、速度、加速度、车钩力、缓冲器行程等进行全面分析,对确保重载列车的安全运行极为重要。本文将模拟计算结果与线路试验结果进行了对照,取得了较好的一致性。文中分析了制动过程中车钩力变化的过程及沿车长的分布,分析了制动初速、车钩间隙、制动开始时的车钩状态、缓冲器特性及制动特性等对列车冲动的影响,同时指出了减少该冲动的途径。  相似文献   

11.
重载列车纵向冲动机理及参数影响   总被引:1,自引:0,他引:1  
利用重载列车空气制动与纵向动力学联合仿真系统,仿真计算列车制动过程中的冲动过程,发现纵向冲动是由冲击作用和挤压作用共同形成,最大车钩力就是这两者中力较大的一个.如果最大车钩力是由冲击力产生,则最大车钩力发生在列车尾部,反之最大车钩力是挤压力时,最大车钩力发生在列车中部.车钩间隙对列车纵向冲击力和挤压力都有影响,车钩间隙...  相似文献   

12.
两万吨列车纵向动力学性能预测   总被引:3,自引:0,他引:3  
开发了基于空气制动系统仿真的列车纵向动力学仿真程序.通过单车撞击试验获得缓冲器本构关系,通过仿真获得1+2+1编组两万吨列车制动特性.计算了两万吨列车车钩力分布特性,在受力特点上看,1+2+1编组列车在制动时可以看作中间分界的两段列车,每段列车前部受压,后部受拉.最大车钩力发生在列车的约1/8处,最大拉钩力发生在列车的约7/8处.后部机车滞后于前部机车制动,将使受压车辆数目增多,最大压钩力增加、发生位置后移,最大拉钩力变化不大.车钩间隙越大,车钩力越大.初速度越高,车钩力越小.  相似文献   

13.
提出了一种新型的电空制动系统,建立了新型电空制动系统的仿真模型,与实验结果比较后确定系统参数,预测了各种常用制动与紧急制动时列车制动能力的变化和纵向冲动的变化.仿真结果表明,与传统空气制动相比,新型电空制动系统制动能力更强,制动能力增强的效果与减压量相关,常用制动时减压量越大,制动能力增强越明显,减压170 kPa时制动距离缩短30%以上,紧急制动时制动能力变化不大.从车钩力看,电空制动能够降低车钩力,减压量越大降低车钩力效果越明显,减压170 kPa时车钩力缩短56%.新型的电空制动系统不仅能够提升制动力,降低列车纵向冲动,同时具有对车辆改造部件少,改造期间具有兼容性好的特点,适合中国货车大保有量装备水平的提升.  相似文献   

14.
比较了目前两种常见的组合列车制动系统特性获取方法的差异,通过对比发现,两种方法得到的制动特性在平道常用全制动工况下,最大车钩力可产生48%的差异.列车制动特性主要表现为制动波传播特性和制动缸升压特性,其中制动缸升压特性的差异是造成两种方法计算结果较大差异的主要原因.组合列车中任一车辆的制动特性受所有机车排气的影响,制动系统仿真方法中考虑了多机车排气对列车中车辆的减压速度的影响,因此制动特性更接近于真实组合列车制动特性.而使用单编万吨列车制动试验特性插值计算组合列车制动特性方法没有考虑多机车排气影响,对列车纵向冲动分析结果会造成较大的误差.  相似文献   

15.
利用重载列车空气制动与纵向动力学联合仿真系统,仿真计算列车制动过程中的冲动过程,发现纵向冲动是由冲击作用和挤压作用共同形成,最大车钩力就是这两者中力较大的一个.如果最大车钩力是由冲击力产生,则最大车钩力发生在列车尾部,反之最大车钩力是挤压力时,最大车钩力发生在列车中部.车钩间隙对列车纵向冲击力和挤压力都有影响,车钩间隙对冲击力的影响比对挤压力影响更大,对后部车辆的影响更显著;车钩间隙越大,最大车钩力越大.闸瓦摩擦系数对挤压力影响较大,对冲击力影响较小;摩擦系数越大,挤压力越大,发生车位越向前移.  相似文献   

16.
利用空气制动和纵向动力学联合仿真程序,采用了KZ1空气制动系统和胶泥缓冲装置,建立了P160D快捷货车组成的快捷列车模型,计算紧急制动下不同制动缸充气时间对不同装载状态快捷列车纵向冲动的影响.结果表明,紧急制动距离随着制动缸充气时间延长而增大;满载、空载快捷列车和空重混编快捷列车中最大车钩力、最大加速度随着制动缸充气时间延长而减小;不同制动缸充气时间下,满载、空载快捷列车和空重混编快捷列车的纵向车钩力小,车辆瞬时加速度大,快捷货运列车运行中需对加速度进行控制.  相似文献   

17.
基于列车纵向动力学理论,分析了车钩间隙大小、大间隙车钩数量和车钩间隙分布模式对重载列车纵向冲动的影响。计算结果表明:制动过程中,车钩间隙越小,列车最大车钩力越小,当初速度为60 km/h时,列车车钩间隙为0.01m与0.018m的最大车钩力相差52.14kN;列车最大车钩力随着大间隙车钩数量的增加而显著增大,大间隙车钩数量为10的最大车钩力为799.14kN,大间隙车钩数量为100的最大车钩力为938.18kN,后者比前者增加了17.4%;在凸型分布、上升分布、均匀分布、下降分布和凹型分布5种车钩间隙分布模式中,车钩间隙按凸型分布时列车最大车钩力最小。在允许范围内,采用小间隙车钩和按凸型分布编排不同间隙车钩有益于降低列车纵向冲动。  相似文献   

18.
基于摩擦缓冲器动力学理论、车钩双向接触方法与车体摇枕载荷传递模型, 构建了车辆冲击三维动力学模型, 仿真了不同冲击速度与不同空重车状态的货车冲击, 分析了车辆冲击动态特性及其对摇枕横向载荷的影响, 并通过试验对仿真结果进行了验证。分析结果表明: 利用车辆冲击三维动力学模型顺利实现了车辆冲击时缓冲器动态特性、车钩连挂动态特性与摇枕横向载荷的仿真计算, 并获得了与冲击试验较为吻合的结果, 其中车钩力误差基本小于10%, 摇枕横向载荷误差基本小于25%;空车质量较小, 在冲击作用下车钩和从板姿态变化大, 因此, 重车冲击空车时车钩力动态曲线振荡特性较重车冲击重车更为明显, 甚至局部出现尖峰; 相对于车钩接触模型与力学传递特性, 摩擦缓冲器模型存在黏滞特性, 导致重车冲击重车和重车冲击空车下车钩接触力较缓冲器阻抗力分别小24%和31%;车钩力和摇枕横向载荷随着冲击速度的提高而逐渐增大, 且时间变化历程与最大峰值出现的时间基本一致, 相同速度下重车冲击重车的车钩力要大于重车冲击空车的车钩力, 在3、5、8km·h-1速度下分别大57%、25%和37%, 而产生的摇枕横向载荷刚好相反, 3种速度下分别小42%、53%和47%, 因此, 重车与空车调车连挂过程更容易造成转向架摇枕横向载荷过大, 应严格控制其连挂速度。   相似文献   

19.
目前国内是参考铁道客车的标准提出轻轨用列车缓冲器的性能指标,并据此选择轻轨列车缓冲器容量和动态阻抗特性。由于城轨车辆采用动力分散的模式,且编组很少,在正常工况下所受车钩力很小,所以参照铁道客车标准选择的缓冲器容量和动态阻抗力往往过高。采用动力学的分析方法确定了动态阻抗特性改变前后的列车纵向冲动量,提出在满足性能和安全要求的前提下,可以降低缓冲器的动态阻抗力和容量,不仅可以改善列车的纵向冲动、提高缓冲器的使用寿命,而且能够降低制造成本。  相似文献   

20.
为了分析偏载列车在小半径曲线运行的安全性问题,基于重载列车纵向动力学模型和短编组三维重载车辆轨道耦合动力学模型,对偏载车辆的安全性指标进行了分析. 首先利用纵向动力学模型分析了重载列车纵向冲动时的车钩力特征和变化规律,其次将计算得到的车钩力作为边界条件输入到三维短编组重载车辆轨道耦合动力学模型,研究了小半径曲线运行时车钩力和车辆偏载量对列车安全性指标的影响. 研究结果表明:单编万吨列车的最大车钩压力随着车位的增大而减小;货车向外侧偏载时,钩压力对偏载货车安全性影响较大,钩拉力影响较小. 当钩压力增大到800 kN和车辆偏载量增大到500 mm时,轮重减载率将会增大到1.00,因此,制动工况更容易出现偏载脱轨事故;相同偏载量下,曲线外侧偏载下的轮重减载率比内侧偏载情形的大;当钩压力由0增大至800 kN时,由轮重减载率确定的横向偏载量安全限值由?421 mm降低至?215 mm,设定重载列车偏载的安全限值的时候应考虑纵向冲动的影响或制动加速度量的控制.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号