首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
采用谱解法模拟脉动风荷载场,根据风洞试验测得的车辆的空气动力参数,计算出作用在车辆侧面的风荷载;将风荷载加到人-车-路耦合振动系统方程中,建立起考虑其影响的系统耦合振动方程;采用人体加权竖向振动加速度均方根值对车辆乘坐舒适度进行评价,并对模拟风速场及侧向风速大小对车辆乘坐舒适度的影响进行讨论.分析表明:静态风减小了人体、车辆振动加速度的最大值,但对其加速度均方根值没有影响;脉动风作用下人体振动加速度最大值略有变化,但均方根值却增大较多;侧向风荷载场对路面结构的振动几乎没有影响;平整路面下乘坐者出现不舒适感的临界风速为55m/s,A级不平整路面出现不舒适感的临界值为15m/s.  相似文献   

2.
基于人-车-路三自由度振动模型的路面平整度评价方法   总被引:4,自引:0,他引:4  
为了更准确地评价路面的行车舒适性,以乘客的竖向加权加速度均方根值作为平整度评价指标,将人-车-路组成的系统简化成三自由度振动模型,依据牛顿法建立了振动微分方程,采用传递矩阵法对其进行了求解,进而建立了考虑人-车-路相互作用的路面平整度评价方法。结果表明,该评价方法能考虑不同路面类型以及公路等级的影响,对于不同等级路面的评价结果与实际情况一致,而国际平整度指数、功率谱密度和平整度标准差在部分工况下不能很好地描述路面的舒适性。  相似文献   

3.
大跨度窄加劲梁悬索桥竖向振动响应研究具有现实意义。基于动力平衡理论和有限元法建立车辆和桥梁的动力微分方程,采用空间三轴车辆模型,利用ANSYS软件编制车桥耦合振动程序进行计算。激振源为路面不平整度,利用车桥系统力与位移协调条件,应用Newmark-β法求解动力方程,分析不同车速、车重、路面等级工况下车辆荷载对大跨度窄钢桁加劲梁悬索桥跨中竖向振动响应的影响。结果表明:车速和路面等级主要对竖向振动加速度响应有较大影响,而对竖向振动位移响应影响较小;竖向振动加速度响应随车速增大而增大,随路面等级降低而增大;随车重的增加竖向振动位移响应增加,而竖向振动加速度降低。  相似文献   

4.
为了准确评价路面的行车舒适性,以乘客的竖向加权加速度均方根值作为平整度评价指标,采用五自由度振动模型,考虑车路耦合,用传递矩阵法进行了人-车-路相互作用分析,研究了车速、车架转动惯量、座椅刚度系数和阻尼系数以及轮胎的刚度系数对加权加速度均方根值的影响,并建立了基于人-车-路相互作用的路面平整度评价方法。算例结果表明:A、B、C、D四个等级路面的加权加速度均方根值分别为0.3812、0.7963、1.2320和2.9706m.s-2,舒适性评价分级与路面分级时的主观评价分级相一致;相对于现有方法,该方法考虑了不同路面类型和行车速度的影响,体现了车辆的转动,可评价货车行驶的舒适性。  相似文献   

5.
为高效预测动态环境下人-车系统的人体振动响应特性及汽车乘坐舒适性,依据人-车-路系统间的相互作用和多体动力学原理,建立了9自由度汽车乘坐动力学模型,应用拉格朗日原理推导了乘坐动力学方程。基于路面不平度激励及汽车行驶速度变化,构建了路面随机激励的时域模型。利用MATLAB/Simulink仿真工具,建立了人-车-路系统仿真模型,并对某轻型车辆在不同路面、不同车速下的人体振动响应进行了仿真分析。仿真结果表明:在同样车速下,随着路面等级的降低,人体各部位的加速度响应幅值明显增大;当车辆行驶在随机路面上时,路面不平度随机激励引起的人体振动能量主要集中在低频段,约在5Hz出现第1阶共振频率,大约在10Hz出现第2阶峰值,这与众多试验结果一致。可见,9自由度汽车乘坐动力学模型及其仿真模型,不仅能快速计算动态激励下人体的振动特性和乘坐舒适性,而且具有较好的可信度。  相似文献   

6.
为研究非独立悬架在路面行驶时外界环境对车身振动响应的影响,建立了简化的四自由度1/2车辆悬架系统的线性模型;运用随机振动的基本理论,以路面不平度的功率谱密度为输入分析路面不平度等级、行驶车速和车身质量对车身振动的影响。通过MATLAB实例分析,表明车身振动随车速和路面不平度的增加而增大,在不超载的情况下提高承载质量有利于减小车身的振动。  相似文献   

7.
为了研究混合梁桥结合段动力平顺性问题,针对某混合梁独塔斜拉桥,将结合段按刚度等效换算为同一种材料,建立桥梁有限元模型;基于9个自由度的三轴车辆模型,根据规范规定的路面粗糙度谱,用三角级数法模拟了B级粗糙度样本,采用Newmark-β法求解车桥系统运动方程,建立了汽车-桥梁垂向耦合振动仿真模型.在此基础上,编制了车桥耦合振动分析程序,求解了桥梁结合段和车辆的动力响应. 研究结果表明:路面粗糙度下降一个等级,桥梁结合段竖向加速度增加一倍;从动力性能角度分析,钢-混结合段钢格室全填充时的刚度平顺性略优于半填充时的刚度平顺性.   相似文献   

8.
基于路面不平整度的车辆振动响应分析方法   总被引:7,自引:2,他引:7  
为了分析路面与车辆的相互作用,提出了四自由度1/2车辆模型相对于不平整路面耦合振动分析方法。根据GB/T7031-1986建议的公路路面功率谱密度的拟合表达式,在分析了运行汽车固有振动频率和行驶速度的影响后,获得分布在一定频率范围内的离散功率谱密度数据,利用离散傅立叶逆变换得到路面不平度值,并以此作为1/2车辆垂向动力学模型的输入激励,通过数值仿真得到运行车辆系统在不同路面不平整度下的时域响应。分析结果表明:车辆动荷载系数随车速增大呈线性增加,随路面等级变差呈非线性增大,路面等级是影响车辆动力作用的最显著因素。  相似文献   

9.
考虑车辆的纵向转动与倾覆,将重载车辆通过桥隧过渡段的过程视为一定初始条件下的受迫振动.根据D'Alembert原理,建立了车辆与路面的动力耦合计算模型,并给出振动方程,利用Laplace变换,对车辆的动力响应进行分析,求得车辆各轮胎对路面最大作用力随时间的变化规律.研究了车辆载质量、货物位置、行车速度与差异沉降对汽车动力响应的影响,实测了汽车的加速度,并对计算结果进行了验证.分析结果表明:差异沉降、行车速度以及车辆载质量的增加均使车辆对路面的冲击力增大,影响程度由大到小依次为车辆载质量、差异沉降、行车速度;货物位置对车辆冲击力的影响较小.  相似文献   

10.
建立了车辆结构的刚柔耦合动力学模型,对比了刚性构架和柔性构架的振动响应,计算了构架的载荷谱;分析了应力谱转化方法,利用有限元方法与多项式拟合方法计算了构架的动应力谱;基于动应力谱与相关标准,运用线性累积损伤理论与疲劳裂纹扩展寿命Paris方程计算了构架的疲劳全寿命。计算结果表明:相比于多刚体车辆系统动力学模型,采用考虑构架柔性的车辆系统动力学模型计算的构架振动加速度响应在构架固有频率36.94~95.53Hz范围内的幅值较大,因此,构架的模态对振动响应的贡献显著;将载荷谱转化为应力谱的多项式拟合方法与瞬态分析方法相比较,应力误差最大值为1.16MPa,相对最大误差为3%,满足工程分析5%的计算精度要求;基于疲劳损伤理论计算的可靠度为95%的构架疲劳寿命为1.82×106 km;构架危险关注点裂纹由1mm扩展到2mm的寿命为1.76×106 km,满足中国高速列车车辆检修标准中制定的五级检修周期为1.2×106 km的要求。可见,构架模态参与下的动态应力谱计算方法与构架的疲劳全寿命预测方法可靠,有益于构架的动态设计与维修周期的制定。  相似文献   

11.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

12.
高速铁路路基不均匀沉降直接影响列车的动力特性.本文建立了车辆轨道路基空间耦合动力学模型,对沉降区车体振动、轮轨力、钢轨加速度和轨道板加速度等动力特性进行了分析.在车辆动力响应和轨道动力响应中,车体垂向振动加速度受路基不均匀沉降影响最为明显,且最有规律可循.将车体垂向振动加速度作为输入量,基于RBF神经网络对路基不均匀沉降的弦长和幅值进行识别,通过网络逼近性能和输出结果的训练不断优化神经网络模型,最后可得预测效果误差小于2%,可用于路基不均匀沉降的识别.  相似文献   

13.
基于AMESim软件建立1/4空气悬架系统模型,利用Matlab软件设计空气悬架系统控制器,使用Matlab和AMESim对空气悬架系统进行联合仿真。白噪声路面信号输入下的联合仿真结果分析表明,安装主动空气悬架系统车辆的最大振动加速度与振动加速度均方根、平均车身高度、动载荷均比安装被动空气悬架系统的车辆小,该仿真结果符合有关主动空气悬架系统的一般研究结论,该控制方法可以有效提高车辆的平顺性。  相似文献   

14.
高速铁路路基结构空间时变系统耦合动力分析   总被引:5,自引:0,他引:5  
考虑高速线路的实际工况,建立了包括轨道结构和车辆的路基结构空间时变动力系统分析模型.将线路结构及车辆离散为不同的单元,采用能量原理导出了系统动力方程,进一步建立了系统动力矩阵.作为模型的验证,对连续谐波不平顺条件下系统动力响应进行了分析,得出了车辆走行过程中的车体加速度、动轮载以及基床动应力、基床动变形等动态响应结果.计算结果表明,本文中的计算模型是合理的.  相似文献   

15.
为了研究高速列车荷载作用下,Ⅰ型轨道板端部与CA砂浆层间的离缝现象对钢轨、轨道板及车辆的力学性能的影响,建立了车辆-Ⅰ型板式轨道垂向耦合动力学分析模型.以轮轨力、钢轨位移及加速度、轨道板位移,拉应力及加速度、车辆加速度为评价指标,分析了不同离缝长度和高度工况下上述指标的变化规律.研究结果表明:板端离缝长度越短,轨道板越容易脱空受力;轨道板脱空受力时的离缝高度等于该离缝长度下板的竖向最大位移;离缝长度及高度的变化对轨道结构及车辆的受力状态均有影响,但离缝长度的影响更大;长度不大于0.6 m的板端离缝主要使钢轨及轨道板的变形及受力状态恶化,长度大于0.6 m的板端离缝也会使车辆的振动加速度超过容许值.   相似文献   

16.
路面不平整引起的车辆动载计算方法   总被引:3,自引:0,他引:3  
为了分析不平整路面上行驶车辆的动载特性,研究了西宝高速公路平整度实测结果,用正弦曲线模拟路面表面,建立了考虑汽车侧倾因素和轮胎阻尼的四自由度车辆振动模型,利用模态理论和编程计算对车辆振动模型在不同路面波长、不同振幅、不同行车速度及左右车轮激励不同时的动载进行了分析和求解,给出了车辆在不平整路面上行驶时产生的动载计算方法。计算结果表明:波形路面上产生的动荷载沿路线纵向呈波形分布,在路面上行驶的车辆对路面可能产生很大的动荷载,最大动荷载系数可达到2.0以上。  相似文献   

17.
基于某车参数建立汽车5自由度线性振动模型,模型中引入了后轮滞后路面随机激励,采用MMATLAB/SIMULINK对整车振动进行仿真模拟,将前后悬架刚度改进前后的车身和座椅处的加速度、悬架动挠度及车轮动位移4项指标进行对比分析,进而对前后悬架刚度进行优化,从而改善车辆平顺性和乘坐舒适性,可为车辆平顺性设计提供参考。  相似文献   

18.
用位置敏感探测器检测振动信号,与传统的加速度传感器相比,提高了系统检测精度,缩短了响应时间,减小了时滞对隔振性能的影响.建立了振动主动被动复合控制系统的动力学模型,设计制作了实验装置,并对隔振性能进行了实验测试.实验结果表明,振动主动被动复合控制兼有主动控制和被动控制的优点,具有良好的隔振效果,在频率10~1500Hz基础激励范围内,动传递率低于20%.  相似文献   

19.
为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号