首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究地铁列车经过车辆段咽喉区时对临近建筑物振动影响的特征及传播分布规律,以某地铁车辆段咽喉区临近新建建筑物为研究对象,选取咽喉区线路临近的场地土及建筑物内部的房间作为测试点开展振动测试分析.结果 表明:车辆段咽喉区振动影响持时长、强度大、频率特性复杂;咽喉区内的减振垫碎石道床地面线路以低频振动为主,振动主频为12 Hz;咽喉区内的U型槽整体道床线路高频振动多,振动主频为63 Hz.建造隔墙对楼板振动的影响较大,实测其减振量可达5.9 dB以上.建筑楼板的振动强度及分布规律受振源频率及楼板固有频率共同影响,在楼板设计时应避免共振效应.  相似文献   

2.
以北京地铁四惠车辆段上盖大平台及其上的住宅楼为研究对象,根据地质勘察及设计等资料,以地铁列车动荷载时程作为模型输入,建立FLAC二维动力数值分析模型,并进行动力学分析,得到地铁列车运行产生的振动对车辆段上盖及开发建筑的影响规律:在地铁列车通过时,车辆段上盖开发大平台两层板的水平振动强度第一层比第二层大,而两层板竖直方向振动强度几乎一致;随着与地铁线路距离的增加,各幢楼房的水平振动强度在不同楼层的分布规律并不一致,其中位于地铁线路上方楼房的水平振动强度在底层和顶层都较大、中间层较小;每幢楼各层的竖直方向振动加速度几乎一致;对于各幢楼房而言,振动强度竖直方向较水平方向更为显著。  相似文献   

3.
"桥建合一"型地铁高架车站的轨道梁刚接在站房结构框架梁上,存在严重的车致振动舒适度问题。为了研究列车过站时"桥建合一"型地铁高架车站的振动舒适度规律,以某典型侧式"桥建合一"型地铁高架车站为研究对象,采用数值计算软件Matlab建立27自由度列车模型,采用有限元软件Ansys建立车站有限元模型,基于分离迭代法实现列车-车站的耦合作用,并对比实测数据验证列车-车站耦合振动分析模型的准确性。采用已验证的列车-车站耦合振动分析模型计算列车到发站时站房的振动舒适度敏感点,并研究列车车速、楼板厚度和桥墩跨度参数对站房振动舒适度的影响。研究结果表明:"桥建合一"型地铁高架车站的结构动力特性具有特殊性,典型楼板的1阶竖弯频率为28.91 Hz,是高铁客运站的4.7~7.7倍;站厅层振动舒适度敏感点位于结构缝附近和车站端部悬挑区域,列车到站时站厅层振动超标最大为32%;站房的车致振动相应总体上随列车车速的增加而增大,列车正线过站时60~80 km/h速度区间与列车会车过站时20~40 km/h和60~80 km/h速度区间的楼板振动增幅较为显著;楼板的车致振动在其自振频率附近会产生"共振效应",楼板厚度参数对楼板自制频率的影响较小,桥墩跨度参数对楼板自振频率的影响较大,合理设计桥墩跨度可以有效避免楼板产生"共振效应"。  相似文献   

4.
针对地铁车辆段建筑信息模型(BIM,Building Information Modeling)正向设计过程中,工艺设备构件库信息量无法满足设计使用需求的问题,提出了采用BIM正向设计技术进行地铁车辆段工艺设计的基本流程及信息流优化方式,研究了在工艺设计专业领域内基于Revit平台进行工艺设备多途径三维建模并自动化录入信息的方法。该研究成果可提升工艺设计协作效率,为地铁车辆段及其他工业厂房建设项目的工艺正向设计基础提供借鉴。  相似文献   

5.
以佛山市南海区地铁金融城项目为例,分析地铁线路上盖建筑的振动控制设计措施。项目实施前,先对既有类似项目进行了调研和测试,以指导相应的减振措施。项目裙楼施工完成后,对地铁振动进行了现场实测,并通过采集的数据进行数值分析。结果证明:采用浮置板轨道、建筑结构采取脱开设计等振动控制措施是合理的。  相似文献   

6.
为掌握地铁车辆段天车的振动源强特性及其在车辆内的振动传播规律,在广州某地铁车辆段进行了现场振动试验.分析结果表明:天车在车辆段运行时,接缝处牛腿振动加速度明显较大于无缝处,两者相差3~4 dB,因此建议车辆段内天车轨道使用无缝钢轨,以达到减小振动源强的目的.天车以满载和空载两种工况运行时,上盖建筑物楼板中央和柱脚振动在6~ 12.5 Hz频段有一定差异.在该频率范围,天车以满载工况运行引起上盖建筑的振动大于空载工况,而在其它频率范围则相差不大.天车引起的振动从上盖建筑物1层柱脚向3层柱脚传递时,在大于80 Hz频率范围会有一定衰减,而在30~ 60 Hz频段则会出现一定的放大,在5~ 20 Hz频段基本没有变化.天车振动能量通过阻抗较小的混凝土结构直接传至上盖建筑物,从而造成吊车运行引起上盖建筑物的振动响应较大.因此,车辆段设计时除关注列车引起的振动外,还应关注天车运行诱发上盖物业的振动.  相似文献   

7.
通过分析深圳某地铁车辆段大底盘上盖多塔结构设计过程,分别建立整体模型与分塔对称、不对称模型,并分析不同模型间楼层剪力的变化,通过对比地震剪力及实际配筋得出,转换层大部分位置的配筋值维持单塔的计算结果,单塔楼面梁的配筋值计算结果大部分大于多塔的计算结果。然后分析大底盘多塔结构温度应力的影响,得出在塔楼边界位置易出现应力集中现象,需要采取楼板加厚、双层双向配筋,并根据温度应力计算结果附加配筋等措施进行加强。  相似文献   

8.
在总结地铁车辆段振动噪声影响的特点及上盖开发振动噪声控制现状的基础上,系统分析综合控制的流程及方法,包括工程条件特点的需求梳理及分析、振动噪声控制标准选择及确认、振动噪声影响分析及预测、综合减振降噪方案的确定及实施、振动噪声控制措施效果实测及评估等,最后提出下阶段需重点研究的内容,包括车辆段不同功能区域振动噪声源强、振动噪声控制指标、不同减振降噪技术措施的效果等。  相似文献   

9.
研究目的:某城市地铁正在建设,为取得较为可靠的地铁运行对邻近建筑振动影响的预测精度,有必要对地质条件较为特殊的该城市地铁沿线开展特定研究。本文针对该城市中软Ⅲ类场地土,建立地铁列车-轨道垂向耦合振动数值模型及隧道-土体-建筑有限元模型,参考该城市地铁参数,对邻近地铁的一般建筑在地铁运行时的振动响应作出理论预测。研究结论:(1)地铁邻近建筑的振动主频体现为结构的自振频率,且建筑低层存在地铁激励的中高频反弹区;(2)列车车速和单双线运行将显著干预邻近建筑的振动响应峰值,但对建筑的振动形态无明显影响;(3)多层建筑至隧道中心水平距离在5 m范围内,小高层与高层建筑在10 m范围内或30~40 m的振动放大区内,车速超过60 km/h时,邻近建筑全部或部分楼层振动响应可能超越相关振动限值,需进一步考虑减振控制;(4)该研究结论可为地质条件相似地区的地铁设计施工及未来的振动控制提供理论和技术支持。  相似文献   

10.
以西安地铁2、6号线交叉通过钟楼案例为背景,提出通过数值计算与现场测试相结合进行复杂交通环境下古建筑微振动响应的预测方法,并给出应用实例。通过现场测试获得路面交通振动响应及结构动力放大系数,充分利用地铁2号线已开通运行、地铁6号线尚未开工建设这一有利条件,对现况交通振动进行详细测试;同时建立三维动力有限元模型,并采用“振源输入-地表响应输出”两位校准法,验证预测模型的有效性;随后利用上述模型及预测方法,研究比较3种不同线路方案、5种列车运行工况下列车振动对钟楼振动的响应。研究结果从控制钟楼振动角度为地铁6号线建设的线路优化提供依据,研究方法可用于其他同类复杂交通环境下木结构振动响应的预测。  相似文献   

11.
基于振动在建筑物内的传递特性,提出一种新的环境振动预测方法——振动分频传递预测方法。针对北京地铁4号线附近某砌体结构开展现场振动测试试验,并建立了该砌体结构的有限元模型,利用振动分频传递预测方法进行相关数值模拟计算。试验及数值计算结果表明:有限元模拟计算下的结果与实测结果基本一致,验证了该方法能够有效地预测地铁运行引起邻近建筑物的振动响应。  相似文献   

12.
王东 《铁道建筑》2020,(3):63-66,72
采用敏感度分析与数值模拟相结合的方法,对影响高速列车引起地面振动的土体参数敏感度进行分析及参数反演。以宝兰客运专线榆中站附近一段路堤的地面垂向振动现场试验为依托,建立车辆-轨道-路基-地基数值模型与神经网络。以土体参数样本集为输入源,各测点地面垂向振动加速度有效值作为输出,基于敏感度理论计算各测点处的参数敏感度。结果表明:影响地面振动的土体参数敏感度顺序为弹性模量>阻尼系数>泊松比>密度>内摩擦角>黏聚力;阻尼系数敏感度随距中心线距离增大呈上升趋势,其余参数随距离增大变化不大;基于敏感度分析结果,选取相关参数作为待反演参数,将现场实测的各测点垂向振动加速度有效值输入神经网络,反演得出的各参数值与现场实际参数值相对误差均小于5%,在工程可接受的范围之内,证明了神经网络反演方法的可行性。  相似文献   

13.
为了更好地满足车辆段大架修库上盖物业开发对柱网的跨度要求,深入分析车辆部件工艺尺寸、数量、运输工具等技术参数,测算工艺优化后的柱网跨度.测算结果表明,在满足大架修库功能的前提下,转向架维修区与起落车作业区跨度需保持为21.0 m,车体检修区、编组线、喷漆库及部件检修区跨度可优化为18.6 m.深圳地铁14号线昂鹅车辆段...  相似文献   

14.
为研究有限元法在高速列车荷载引起的环境振动问题研究中的应用及模拟精度,采用数值方法分析列车运行引起桥梁附近自由场振动问题,数值模型包括列车-轨道-桥梁耦合模型和墩-桩-土耦合模型。其中,墩-桩-土模型采用有限元方法建立,引入黏弹性人工边界从半无限介质土体中截取出有限计算域。通过在模型截取边界施加切向和法向弹簧-阻尼单元,消除模型边界处波的反射与透射。其计算精度通过求解Lamb问题可知,黏弹性边界相比固定边界更加接近于解析解。再将黏弹性边界应用于车致环境振动数值模型,数值分析结果与现场测试结果进行对比,可以看出实测时程与分析结果时程曲线波形和幅值均吻合较好,从1/3倍频程对比曲线可以看出,地面响应峰值频率约为50 Hz,数值分析与现场实测结果在响应优势频段吻合较好。由总振级结果可知,地面响应随与振源距离的增加而减小,数值分析结果与实测响应结果在各测点的具体数值存在一定差值,但差值较小,且振动衰减趋势基本一致。  相似文献   

15.
针对地铁列车运行引起的隧道及土层振动响应问题提出数值预测模型。该模型根据移动荷载作用下动力响应解,将地铁列车运行引起的振动问题归结为计算频率-波数域内传递函数和频域内移动轴荷载问题。传递函数采用三维周期性有限元-边界元耦合模型计算,移动轴荷载主要考虑为频域内轨道不平顺激励下轮轨接触力。利用上述模型计算北京地铁4号线北京大学东门站北侧区间地铁列车运行引起的振动响应,并结合现场振动实测数据探讨该区间浮置板轨道减振效果。结果表明:模型具有良好适用性,可应用于地铁列车运行引起的振动预测;浮置板轨道是一种有效减振措施,在其工作频段内有明显减振效果,但在低频,浮置板轨道不能起到减振作用。  相似文献   

16.
在总结我国分离式和合并式合建建筑振动转播路径和动力特性的基础上,评述不同类型的既有合建建筑动力响应及振动控制的工程实测和数值分析的研究现状。结果表明:相较于临近地铁建筑,合建建筑在振动强度、激振频段、低频敏感频段、水平振动量级和振动形态等方面具有显著不同;为改善合建建筑的振动环境,可通过降低车体重量、改善轮轨接触面和选择适合的减振轨道与扣件等手段对振源进行振动控制,还可采用整体浮置或局部浮置等隔振方法进行上部结构振动控制。为此,应在适用于合建建筑的通用耦合计算模型、减振轨道实际控制效果、制定匹配合建建筑的振源频率、开发具有针对性的隔振装置产品、浮置隔振中参数优化与关键部位的构造设计等领域进行深化研究。  相似文献   

17.
通过对规范和工程案例的研究,确定地铁车辆段盖板结构主要构件的耐火极限及设计措施。基于热弹塑性本构模型编制非线性有限元分析程序,对钢筋混凝土盖板结构中的最不利楼板和主梁的瞬态温度场以及火灾下的力学行为进行数值模拟,计算结果验证了盖板结构中的梁和楼板的设计措施能够满足3.00 h耐火极限的要求。对比研究火灾下双向板与单向板的温度应力和高温塑性变形,得出薄膜效应的特征与板件长宽比的关系。通过回归分析,提出受火3.00 h时背火面温升与沿温度梯度方向厚度的关系曲线,明确盖板结构厚度最小取值。研究结果可为此类结构的防火设计提供参考。  相似文献   

18.
地铁交通诱发邻近建筑物振动的实测与分析   总被引:2,自引:0,他引:2  
根据现场实测数据,对某地铁2号线沿线典型区段地铁引起的临近建筑物振动实况和振动特性及其传播规律等进行了分析研究。结果表明:地铁诱发的沿线建筑物的振动以竖向为主,且楼层竖向振动基本表现为整体振动;在框架结构中,振动信号主要是沿柱子向上部楼层传播;楼层振动主要表现为低频的楼板振动,楼层间信号的放大主要集中在20 Hz以下的低频信号。此外,本文还给出建筑物振动实测资料的评价分析,为评估地铁运营诱发的环境振动与城市规划设计提供参考。  相似文献   

19.
前海二单元五街坊项目受下穿地铁运行的振动作用,对建筑物振动及区域环境振动造成不利影响。通过现场振动实测,得到振源及地表的振动数据,利用实测数据验证"轨道-隧道-土层-建筑物"三维有限元模型。模型预测结果表明,3号楼、4号楼和5号楼的最大Z振级指标均满足标准要求;3号楼第3层和4号楼第2层分频最大振动超过标准限值,其余各楼层分频最大振级均满足标准要求。针对超标楼层,建议开展建筑隔振设计,降低振动响应。  相似文献   

20.
高速铁路桥梁的平顺性和稳定性对运营列车的平稳性和安全性有很大影响。为研究冲压机械产生的外部振动激励对高铁桥梁的影响,首先通过对此机械引起的地面振动进行实测,并结合有限元分析软件,确定最大冲击荷载作用下产生的地面振动及传播至桥墩处的振动;然后通过建立列车-轨道-桥梁耦合动力学模型,将桥墩处的地面振动作为激励输入,分析列车以不同速度通过时车辆、桥梁动力学响应。结果表明:地面冲击振动有限元模型计算结果与实测结果基本相符,验证了模型的可靠性;地面振动对桥梁响应会产生一定的影响,距振源50 m处地面振动对桥梁所产生的影响较距振源80 m处(桥墩处)的大,但对运行车辆的影响很小;随着车速由250 km/h至350 km/h,车辆及桥梁各结构的动态响应均有所增大,但都未超出安全限值。因此,冲压机械冲击作用导致的地面振动对列车-轨道-桥梁系统动态服役性能影响非常有限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号