首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
对某型地铁车辆整备状态有限元模型进行了模态和5~100Hz正弦激励仿真计算,分析设备吊挂刚度对车体地板的振动影响。计算结果表明,车下设备吊挂刚度对弹性车体的各种振动模态均有不同程度的影响;车体空气弹簧位置激励时,地板在不同吊挂刚度时的振动响应主要集中在40Hz以内,合适的设备吊挂刚度可有效的降低地板的振动幅值并增加一阶垂弯频率,吊挂刚度对地板在12Hz以上的振动响应影响不大,同时发现刚性吊挂有助于增加车体的刚度;设备激励时,引起地板振动响应主要集中在20Hz以下,激励频率在车体一阶垂弯模态频率附近时,弹性吊挂刚度小于一定值时才能有效地减小地板振动的响应幅值。  相似文献   

2.
基于有限元模态分析和试验模态分析技术对某型铁道客车车体进行了模态参数识别。由于整备车体一阶垂向弯曲频率的计算值与试验值均低于标准要求的10Hz,利用有限元模态分析方法对车体结构进行了局部优化,最终使整备车体一阶垂向弯曲频率提高到10.64Hz,满足了标准的要求。  相似文献   

3.
B型地铁铝合金车体工作模态分析   总被引:1,自引:0,他引:1  
针对B型地铁铝合金车体建立了有限元三维模型,采用ABAQUS软件对车体进行模态仿真计算,判断测点位置,并应用BK模态测试系统对地铁车体进行了工作模态试验。提取车体的前三阶模态参数进行对比分析,结果验证了工作模态和仿真模态的一致性。说明针对车体进行工作模态测试的可行性。  相似文献   

4.
为了研究弹条服役状态下模态频率与波磨激励频率一致引发的共振断裂问题,建立潘得路FC快速弹条有限元简化模型,通过以弹簧为边界条件模拟弹条不同部位的约束,分析其模态频率随约束刚度的变化规律,提出基于弹条约束刚度参数优化的防断裂设计方法。结果表明:弹条扣压端垂向约束刚度(150~450 N/mm)对弹条第一、三阶模态频率(400、900 Hz)有显著的正相关作用,并对第三阶共振峰幅值有明显影响;弹条后跟下部径向约束刚度(400~1 600 N/mm)的变化,引起弹条第二阶模态频率(660 Hz)的变化,两者呈现正相关关系,同时对弹条第二阶共振峰幅值也有显著影响。弹条第二、第三阶模态频率为危险频率,防断裂设计时应重点考虑。  相似文献   

5.
边界条件是结构进行模态分析的基础,不同的边界条件施加方式通过改变结构刚度影响结构模态参数。首先通过理论推导计算模态分析和试验模态分析的基本原理,然后对比例车体有限元模型建立5种可行的边界约束条件,计算分析知弹簧悬挂时比例车体前30阶固有频率与自由模态最大误差为0.02346%,边界条件4和边界条件5时固有频率最大误差分别为25.3386%和10.2383%,在试验模态中可用弹性悬挂模拟结构自由模态。对弹簧悬挂、弹簧杆悬挂和空簧支撑3种不同边界条件下的比例车体进行锤击模态试验分析,得出第3阶垂弯频率最大误差分别为2.545%、2.961%和4.812%,均小于误差允许值5%;利用模态判定准则(MAC矩阵)判定试验模态中结构固有频率的相关性,验证了边界条件对比例车体模态参数的影响。  相似文献   

6.
为研究车体与动力包结构耦合振动特性,计算车体固有模态以及低阶振型,建立了包含车下吊挂动力包的城轨车辆刚柔耦合振动模型,优化分析了动力包结构吊挂参数对车体振动特性的影响。计算结果表明:车体一阶弯曲频率对车辆垂向性能的影响要大于二阶弯曲频率。将动力包的振动以周期激励形式输入模型,当激振频率达到9.5 Hz和16.5 Hz时分别与车体的一阶和二阶弯曲频率相叠加,在此频率下车体的平稳性指标迅速恶化,因此在车辆设计过程中应尽量避免发生该频率下共振。  相似文献   

7.
车体结构灵敏度为车体结构修改提供依据,是现代车体结构设计过程中的重要内容之一。本文以某双层动车组车体为研究对象,建立车体有限元模型,计算车体模态、应力及变形。以车体底架、侧墙、顶板、端墙等不同部位板厚度参数为设计变量,用半分析灵敏度方法,以车体模态频率、静载荷作用下的应力和变形为设计响应,计算响应对各设计变量的灵敏度。计算结果表明,车体前3阶模态频率随底架、侧墙、车顶结构厚度的增加而增大,随端墙、牵枕缓部位板件厚度的增加而减小;车体底架变形对下底板、车顶、侧墙各板板件厚度灵敏度较大,为负值;关键位置应力灵敏度多为负值。通过灵敏度计算分析,揭示影响车体性能的主要因素,明确提高车体模态频率、减小变形及应力的措施。通过灵敏度分析对车体结构进行修改,在提高低阶模态频率并保证变形和应力满足要求的前提下,使车体质量减少410kg。  相似文献   

8.
随着动车组速度的提升,模态对车体的影响越来越显著。对某型号动车组车体进行结构优化并进行整车模态分析,提升整备状态下动车组车体一阶整体模态频率。提升目标为高于10 Hz,以减少动车组车体在服役环境下发生异常抖动问题的频次。研究表明,车体客室设置内端墙在车体轻量化设计和模态提升两方面均有明显优势,最终推荐的内端墙优化方案可以使整备车体一阶整体模态频率高于10 Hz。  相似文献   

9.
以动车组铝合金车体结构模态分析为切入点,重点研究侧墙窗户结构参数对车体模态的影响.以某型号动车组的窗户结构设置为研究对象,建立铝合金车体有限元模型,通过Lanczos法获取车体前6阶模态频率,并通过对车体质量和模态的对比分析,提出有利于提高车体模态的窗户设计建议.  相似文献   

10.
为研究车轮滚动及轨道板激励与车辆固有频率匹配关系,首先对某动车车体进行静态台架模态试验,识别车体固有模态参数;然后在某线路上测试车体振动加速度,识别车体在各互功率谱峰值处ODS变形。通过理论计算车轮滚动频率与某高阶变形频率接近,该频率下车体变形为车轮滚动激励所导致;在速度250km/h,轨道板激励频率与车体1阶垂弯频率接近,车体1阶垂弯变形被轨道板激励频率激发,车体能量较大,垂弯振动较为剧烈,车体中部和转向架上方地板振动较大。轨道板激励导致车体强迫共振。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号