首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 468 毫秒
1.
高速列车隧道压力波浅水槽模拟试验研究   总被引:2,自引:1,他引:1  
当高速列车进入隧道时,在列车前端的隧道空间引起空气的不稳定流动并形成压力波,压力波的形成可以通过自由表面水波运动的水波高度与可压缩流体运动压力的相似关系来模拟。本文介绍了自建的浅水槽模拟试验装置,并利用该装置研究了高速列车进入隧道时引起的压力波动。实验结果表明,压力波浅水槽模拟试验方法及其试验台的研制是成功的,测试结果可以用来校核复杂结构隧道压力波的数值计算。  相似文献   

2.
时速160 km、200 km列车通过隧道时产生的压力波研究   总被引:7,自引:0,他引:7  
余南阳 《铁道建筑》2003,(12):29-31
采用一维、可压缩、非定常流动理论及特征线法发展了准高速、高速列车通过隧道时引起压力波动的数值模拟方法,据此研究列车通过单线隧道和两列车在双线隧道内相会时压力波的变化规律,根据舒适度判据,得出合适的单线和双线隧道断面积,供新线隧道断面设计参考。  相似文献   

3.
开孔缓冲结构条件下的隧道单车压力波特征数值分析   总被引:1,自引:0,他引:1  
在假定隧道内空气流通截面是时间和流动距离的二元函数条件下,根据一维可压缩非定常不等熵流动理论与广义黎曼变量特征线法,发展了高速列车通过设置开孔缓冲结构隧道的单车压力波计算方法,并进行开孔缓冲结构不同参数对初始压缩波强度和压力梯度的分析计算,揭示了开孔缓冲结构的空气动力学特征,对探讨减缓洞口微压波提供了一种分析方法。  相似文献   

4.
高速磁浮列车通过隧道过程中将引起剧烈的压力波动,造成司乘人员耳感舒适性、车体及其零部件、隧道衬砌及辅助设施的气动疲劳寿命问题,有必要对磁浮列车高速通过隧道时压力波效应进行研究。采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法对单列车通过隧道时车体压力载荷进行数值模拟研究,初步揭示隧道长度、列车速度、阻塞比对车外压力波的影响规律;得出时速500~600 km/h速度下基于最大正负值和最大压力峰峰值的最不利隧道长度;论证了列车通过隧道产生的压力波幅值与列车速度平方成正比的适用范围,总结了压力最值与速度的拟合关系式。本文研究方法和结果可为车体设计选用气动载荷提供参考依据。  相似文献   

5.
采用有限体积方法和任意滑移界面动网格技术的CFD方法,对我国高速列车和复线隧道条件下的压力波基本特性进行数值模拟研究。为避免数值计算产生不合理的物理现象,应用光滑启动技术。在验证本文数值方法正确性的基础上,采用三维非定常可压缩湍流流动模型方法,研究高速列车驶入单洞复线隧道时的压力波基本特征,揭示隧道内压力波的形成过程,得到不同断面上不同测点的压力变化及分布规律;研究结果表明:在初始压缩波三维效应的影响下,近隧道入口断面不同测点压力差异较大,且随着列车速度的增加,正压最大值也越大;在距离出口较近的断面上,当列车速度增加到一定范围,正压最大值反而减小;隧道衬砌上的正压最大值多出现在距离隧道入口较近处,而负压最大值则出现在隧道的中央断面上。  相似文献   

6.
近年来,在多条高速线路上对各型高速列车进行了一系列隧道通过和隧道交会试验。现通过对这些空气动力学实车试验数据进行详细分析,获得了高速列车通过隧道和在隧道内交会过程中的压力波特性,以及压力波随列车长度、运行速度和隧道长度等影响因素变化的规律。  相似文献   

7.
基于变流通截面的高速铁路隧道单车压力波数值计算探讨   总被引:7,自引:2,他引:5  
梅元贵  耿烽 《铁道学报》2003,25(2):74-78
基于隧道内空气流通截面是时间和距离的二元函数条件与一维可压缩非定常不等熵流动理论,提出了高速铁路隧道单车压力波广义黎曼特征线法的计算方法和计算程序,并进行了不同喇叭状隧道端口条件下和不同列车前端鼻部长度的空气动力学效应的分析计算。  相似文献   

8.
高速列车进出隧道空气动力学研究的新进展   总被引:8,自引:3,他引:5  
综述国外关于高速列车进出隧道时产生的压力波、压力波变化剃度、形成机理、计算方法、实验方法方面的研究成果以及减少压力波的解决方案,如选取较大的隧道断面,减低阻塞比、修建缓解压力波的附属构筑物等。但对该问题的研究,还存在理论分析不完善、实际造价昂贵等问题。为深入研究上述问题,建立了高速列车空气动力学分析系统。通过对数值模拟与初期实验结果比较,两者能较好地吻合,表明该实验系统运行正常,能够满足对高速列车实验研究的需要。  相似文献   

9.
高速列车通过隧道时诱发车厢内压力波动的数值分析   总被引:6,自引:1,他引:5  
在假定列车车体为均匀多孔车体的基础上,根据一维可压缩非定常不等熵流动理论与广义黎曼特征线法,研制了高速列车通过隧道过程中诱发车厢内外空气瞬变压力耦合的计算方法和计算程序。其中,基于热力学第一定律的“充排法”建立了车厢内压力波动的计算方法,并成功地将该方法推广应用于隧道内会车条件下车厢内压力的计算分析中。通过与国外试验数据的验证表明了本文计算方法与程序的正确性,为准确合理地计算高速列车通过隧道时诱发车厢内瞬变压力提供了可靠的分析工具。  相似文献   

10.
为了减缓高速列车通过隧道引起的压力波动,研究了联络通道对高速列车通过隧道时压力波特性的影响.建立了3节编组高速列车数值仿真计算模型,基于三维非定常可压缩Navier-Stokes方程,以及k-ε方程湍流模型和滑移网格技术,数值模拟了高速列车通过联络通道时隧道的气动特性,研究了设置联络通道对隧道压力波的影响及不同的通道间距对隧道压力波动的影响.研究结果表明:与无联络通道隧道相比,列车通过连通开孔隧道的气动特性得到明显改善;通道对初始压力上升、下降的抑制效果更为明显,对膨胀波的抑制作用更为突出.联络通道的设置使隧道压力波的波形呈现局部锯齿状.  相似文献   

11.
高速列车进入有缓冲结构隧道的压力变化研究   总被引:2,自引:0,他引:2  
采用高速列车空气动力学模型实验对高速列车在进入带缓冲结构隧道过程中瞬变压力传播机理进行研究。实验结果表明,缓冲结构能够减缓隧道内瞬变压力。其原因在于:缓冲结构横断面积逐渐由大变小,阻塞比逐渐由小变大,延长了压力上升时间,降低了压力梯度;另一方面,由于压缩波在缓冲结构和列车、隧道之间多次反射,降低了压力峰值。在M.S.Howe提出无缓冲结构下最大压力波变化理论基础上提出有缓冲结构时隧道内最大压力和最大压力梯度变化规律计算公式。所得结论可为隧道空气动力学研究提供参考。  相似文献   

12.
高速列车驶入隧道端口瞬间在车头前形成压缩波。该压缩波沿隧道以声速向出口端处传播,并在洞外形成微压波。本文根据声学中无限大障板圆形活塞的辐射模型,开发了已知隧道出口端内压缩波压力梯度和大小时的微压波计算程序,并采用国外试验结果验证了程序的正确性。结合拟议的我国高速铁路隧道特征,初步分析了洞口微压波的主要影响因素,显示列车速度、隧道断面面积影响较大。微压波的大小与观测点有很大关系,这对于判断微压波的强弱、危害及其标准研究有很大关系。结果分析也说明所建程序的合理性与简便性,是一种适合工程设计方案比选的方法。  相似文献   

13.
采用数值模拟方法,对高速列车在隧道内运行过程中所产生压力变化过程和分布特性进行分析;计算列车运行过程中隧道内不同位置最大负压;探讨隧道内列车运行负压作用下水沟盖板稳定性计算方法;确定盖板不同漏气面积下密封指数;分析不同行车工况及不同漏气面积条件下水沟盖板稳定性。结果表明:隧道内水沟盖板承受正负交替压力,其中负压峰值较大,对水沟盖板稳定性影响显著。水沟盖板提升量随盖板顶面漏气面积减小而明显增大。当盖板漏气面积小于5cm2时,盖板稳定性不能得到保证。我国目前高速铁路隧道水沟盖板在350km/h会车工况下,盖板提升量不大于0.6mm,列车通过时盖板会出现响动。可适当增大隧道内水沟盖板手孔尺寸以减小这种响动。  相似文献   

14.
高速铁路隧道压力波动主要影响参数研究   总被引:2,自引:1,他引:1  
利用所研制的预测列车进入隧道时引起的列车和隧道环状空间的压力波动软件,计算了流线型列车及隧道主要参数对环状空间3s内最大压力变化的影响。结果显示所有影响因素中,速度和阻塞比对压力变化的影响最大。得出单线隧道单列列车通过时,在速度不大于250km·h-1,3s内最大压力变化与列车速度的平方成正比,但速度超过250km·h-1时,压力对速度的依赖关系有所缓和。分析认为在3s内最大压力变化随阻塞比非线性地变化。研究表明列车长度对头部压力变化的影响较小,但对尾部压力变化有明显影响;隧道内会车压力波在3s内变化量随会车位置不同有明显区别,两列车在隧道长三分之一处交会最为不利。  相似文献   

15.
高速列车突入隧道时的三维非定常流的数值模拟   总被引:4,自引:0,他引:4  
给出高速列车突入隧道形成压力波的三维粘性流场数值模拟过程,控制方程三维粘性、可压缩、不等熵、非定常流的Navier Stokes方程。空间离散采用中心有限体积法格式,时间采用预处理二阶精度多步后差分格式进行离散,对列车与隧道之间的相对运动采用滑动网格技术。真实地描述列车进入隧道所形成压缩波的过程。计算结果与国内外的试验结果相符。计算结果表明:隧道内的压缩波呈现三维特性;同一断面上的压力变化的差异性与列车的运行方式有关。  相似文献   

16.
研究目的:针对列车横截面积与隧道横截面积比值阻塞比的不同,分析计算长隧道内运行的高速列车在不同速度下,由于空气动力学效应引起的列车阻力及热量增加,综合考虑辅助设备发热及隧道壁面热传导导致的能量损失,合理预测不同阻塞比下高速列车运行引起的隧道内温度升高及隧道内温度随时间的变化,得出长隧道内由于高速列车运行引起的热、力效应.研究结论:通过计算与分析表明,列车高速运行导致隧道内阻力变化及热效应的大小,受到列车隧道系统阻塞比的影响比车速的影响更大,列车空调放热是隧道内温度升高的主要因素,壁面摩擦等因素也会导致隧道内热量的进一步增加,行车密度对温度的影响将是非常关键的.对于高阻塞比的列车隧道系统,隧道中部残留的热量还较多,热量积聚效应不容忽视.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号