首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
问题18两条单线区问隧道之问为什么要设联络通道,隧道连贯长度不大于600m的要求是如何确定的?合:《规范》19.122条规定,“两条单线区间隧道之间,当隧道连贯长度大于600m时,应设联络通道,并在通道两端设双向开启的甲级防火门”,一是为沟通两单线区间隧道,二是为分隔成两个独立的防火防烟分区,当列车在一侧区间隧道内发生火灾等灾害、事故时,  相似文献   

2.
提出火灾时人员疏散评价指标-可用安全疏散时间,利用火灾动态模拟器(FDS)软件建立广州地铁3号线B型车前3节车厢全尺寸比例火灾仿真模型,对仿真结果进行烟气蔓延特性分析。根据实验单一变量原则,在车厢不同区域设置3类典型火源,对比其烟气蔓延特性,求解可用安全疏散时间。仿真结果表明,不同区域的火源燃烧对于静止地铁车厢的烟气蔓延特性有一定影响,相同火源功率条件下地铁车厢中部发生火灾的危险性比车厢端部发生火灾的危险性大。  相似文献   

3.
地铁公共区及隧道防排烟系统研究   总被引:1,自引:1,他引:0  
以北京地铁13号线东直门站为例,结合车站公共区与区间隧道的防排烟系统设置情况,分别采用CFD三维模拟与一维网络模拟的方法,对火灾时烟气的分布及气流流动状况进行预测分析,说明防排烟系统的可靠性对于保证火灾情况下的安全疏散能力至关重要。  相似文献   

4.
城市轨道交通区间隧道联络通道中的防火门,由于长期受到列车活塞风作用,存在发生损坏脱落、威胁行车安全甚至造成严重事故的风险。为了降低运营风险,保障运营安全,中国城市轨道交通协会组织编制《城市轨道交通隧道抗风压防火门》(T/CAMET05001—2020)及《城市轨道交通隧道抗风压防火门工程技术规范》(T/CAMET05002—2020)两项团体标准。从标准的编制背景、主要内容、主要特点等方面对两项标准进行解读,以帮助使用者快速、准确地理解和掌握标准条款,促进标准的贯彻实施。  相似文献   

5.
城市轨道交通区间隧道联络通道中的防火门,由于长期受到列车活塞风作用,存在发生损坏脱落、威胁 行车安全甚至造成严重事故的风险。为了降低运营风险,保障运营安全,中国城市轨道交通协会组织编制《城市 轨道交通隧道抗风压防火门》(T/CAMET 05001—2020)及《城市轨道交通隧道抗风压防火门工程技术规范》 (T/CAMET 05002—2020)两项团体标准。从标准的编制背景、主要内容、主要特点等方面对两项标准进行解读, 以帮助使用者快速、准确地理解和掌握标准条款,促进标准的贯彻实施。  相似文献   

6.
地铁区间隧道内对乘客生命威胁最大的是火灾烟气,因此防灾的关键在于烟气控制。车头和车尾火灾时采取纵向通风能使人烟分离,但对于列车中部着火时下风侧乘客将不可避免地在烟气笼罩的环境中。提出了火灾烟气纵向分区控制模式,即利用防烟隔板将隧道划分成行驶区和疏散通道2个防烟分区,采取适当通风阻止烟气侵入疏散通道,保障人员疏散过程与烟气分离。通过1∶5隧道模型中烟气分区控制试验结果的比较分析,证实采取不同通风方式均可使疏散通道保持较高压力,使气流由疏散通道流向行驶区,以阻止火灾烟气侵入疏散通道内,但不同通风方式在高温控制及烟气控制效果上存在差异,其中以疏散通道正压送风及行驶区单侧排烟相结合的通风方式综合控制效果最好。  相似文献   

7.
对于地铁出入段线防排烟系统设计方案,常采用在靠近洞口处设置射流风机辅助排烟的方式,这种方案 中射流风机的配电成本远高于射流风机本身成本。采用 FDS 数值模拟方法,研究郑州地铁 10 号线出入段线隧道 5 种防排烟系统设计方案的隧道风速和排烟效果,并对各方案进行经济性分析。研究结果表明:作为非载客区间 的出入段线,其排烟风速低于 2 m/s 时仍可满足有组织排烟的要求;取消洞口处射流风机,仅采用出入段线所接 车站的 4 台 60 m3 /s 事故风机,仍可较好地控制该出入段线隧道火灾烟气,防止火灾烟气威胁车站的运营安全, 不影响地铁列车司机的安全撤离;条件允许时可以在出入段线靠近车站侧设置一组射流风机,用于加强排烟效果、 提高运营安全水平;同时,火源靠近车站时,靠近出入段线侧两台事故风机比其余事故风机晚启动 30 s,可以有 效改善车站隧道内烟气滞留的问题。  相似文献   

8.
地铁区间隧道安装火灾监测系统对于监测地铁火灾、消灭地铁的安全死角至关重要.结合沈阳地铁1号线一期及延伸线工程区间分布式感温光纤火灾监测系统情况,通过技术经济分析、比较,探讨了地铁区间隧道另一种光纤火灾监测系统--光纤光栅火灾监测系统设置的可行性,以期在保证功能的前提下,达到节约投资的目的.  相似文献   

9.
地铁岛式站台烟控系统的性能化分析   总被引:1,自引:0,他引:1  
以北京地铁某典型岛式车站为研究对象,建立火灾烟气运动的物理和数学模型,采用计算流体力学方法,模拟站台火灾工况下烟气发展和蔓延过程,分析反映流动与发展特性的温度场、速度场、能见度等的分布规律;同时运用人员疏散动力学方法,模拟火灾工况下人员安全疏散所需的时间.以必需安全疏散时间小于可用安全疏散时间作为性能化防火目标的判据,论证火灾烟控系统的有效性和通道设计的合理性,从而为地铁火灾排烟通风系统的合理设计和人员疏散方案制定提供合理、科学的参考依据.  相似文献   

10.
研究目的:随着城市水底隧道工程的大量涌现,城市隧道防火灾是当前城市隧道设计和运营管理中的一个重要问题,对其消防对策的探索已经成为一个非常有价值的重要课题.由于城市水底隧道车流、人流复杂,深度深,呈现中间低、两头高的U型几何特点,发生火灾时烟气向两端蔓延,人员、车辆疏散困难,因此有必要对城市水底隧道的人员疏散方式进行研究.研究结论:目前城市水底隧道常用的疏散方式为双孔隧道横向联络通道疏散,水平辅助隧道疏散和内部纵向通道疏散.通过对3种疏散方式技术经济性分析比较,得出城市水底隧道的人员疏散方式应根据具体的地质和施工条件,采用不同的疏散方式和不同的疏散通道间距.  相似文献   

11.
以隧道独立排烟道集中排烟模式为研究背景,对不同坡度下有无顶隔板的12组火灾工况进行数值模拟,分析顶隔板对隧道火灾烟气蔓延与温度分布的影响.结果表明:顶隔板使隧道在火灾情况下产生明显烟囱效应的临界坡度变为1%,同时隧道顶部的最高温度比原来至少提高了10%,隧道内600℃以上的高温烟气分布范围比无顶隔板情况多出6 m以上、...  相似文献   

12.
采用全尺寸热烟试验方法在深圳地铁莲花北站至少年宫站区间隧道进行机械排烟试验,测试位置位于正线隧道与联络线隧道交汇处以及马蹄形隧道单洞双线与马蹄形隧道单洞单线的交汇处。模拟车头、车尾火灾进行排烟,相邻车站隧道风机进行辅助排烟,测试各种排烟模式,观察各种防排烟模式下的排烟效果;研究复杂线路交汇处隧道烟气运动、蔓延情况和设备的工况,并测量和记录风速等数值。实验结果可对隧道防排烟设计、火灾控制提供数据支持,并为列车中部着火且停在隧道内提供疏散方案。  相似文献   

13.
复合式屏蔽门系统是在全封闭屏蔽门的上方安装组合式电动风阀,并接入车站机电控制系统。当站台发生火灾时,该系统可根据火灾发生在站台端部还是站台中部,有针对性地启动不同火灾模式,既能解决传统站台排烟方案对新规范的适应性问题,也能有效解决一直以来站台中部楼扶梯口排烟困难的问题。通过各地不同类型的车站实测得出,排烟效果较为理想,可以供其他城市借鉴。  相似文献   

14.
应用SES模拟分析软件,对北京新建轨道交通机场线火灾最不利情况--东直门站站台端部发生火灾时,通风空调系统的通风机运行及活塞风井开启状况各种可能的11种排烟模式进行了模拟分析.由数值模拟得出火灾时站台屏蔽门、活塞风井及区间排风机对车站、区间速度场的影响;分析得出东直门侧式站台火灾最佳排烟模式为仅需开启车站左端2台排热风机,同时车站屏蔽门完全打开,由活塞风井、车站出入口及区间隧道补入新风.  相似文献   

15.
基于有限体积法建立了地铁车站三维静态数值计算模型,对列车阻塞隧道时站台滑动门所受的活塞风压进行了计算研究;分别对单、双两种活塞通风条件下,不同活塞风速、阻塞比、滑动门位置对滑动门所受风压的变化规律进行了分析。结果表明,双活塞通风能够有效减弱活塞风对滑动门的风压;单活塞通风条件下,滑动门在最不利位置时,需克服的最大风压约为230 Pa。  相似文献   

16.
针对地铁长大过海区间隧道通风排烟问题,结合青岛地铁1号线瓦贵区间工程,采用理论及对比分析、数值解算等方法,分析过海区间隧道区间风井设置、火灾工况气流组织等问题。介绍青岛地铁1号线瓦贵区间概况,然后提出区间风井设置的要点,参考国内相关城市过江工程实例,采用土建排烟风道,以保证灾害工况下两车追踪人员的疏散安全。阐述陆域段防排烟和海域段防排烟方案,对于陆域段,排烟方案可以按照常规地铁区间进行设置;对于海域段,需根据区间长度,采用全吊顶或者局部吊顶排烟方案。通过研究区间火灾安全目标,设定热释放功率为10 MW,隧道临界风速为2.1 m/s,重点排烟量为80 m3/s,并绘制通风网络解算结果图,解算结果表明各区间风井的防排烟系统均满足规范要求。  相似文献   

17.
本文结合深圳地铁龙华线的实际情况,模拟在实际运营的情况下,区间隧道同时存在3列列车在同一区间隧道内情况下,隧道通风系统能否在火灾工况下火灾模式通风;测试火灾工况下区间隧道排烟系统的排烟效果,并对区间隧道火灾排烟风速测试结果进行了分析,并提出了有关结论,文章对工程设计与管理提供参考和借鉴。  相似文献   

18.
目前对高海拔铁路隧道火灾的研究较少。本文应用火灾动态仿真模拟软件(Fire Dynamic Simulation,FDS)对海拔500,3000 m铁路隧道内的火灾烟气蔓延进行了数值模拟分析,对比了高海拔环境低温、低压、低氧等显著特征及纵向风速对隧道火灾的影响。结果表明,在本文的火灾计算条件下海拔3000 m时隧道内的最高温度比低海拔时低24.8%,CO浓度增大30%~50%;海拔3000 m时随着纵向风速增加,拱顶最高温度显著下降,最大降幅达62.5%,且最高温度点向下游偏离火源区边缘上方;火源上游温度减小且升温范围逐渐减小,纵向风对上游烟气的“稀释”“阻拦”作用强于下游。  相似文献   

19.
通过初生婴儿的头围确定车门开度的上限值,利用气体动力学与燃烧学理论建立了地铁列车在隧道发生火灾时的数值分析模型,采用FLUENT软件模拟了地铁列车在不同速度、不同开门方案下,排烟所需时间及车厢内外压强分布.结果表明,列车车门开度0.07m、车速为30 km/h时,能够快速、有效地排出烟雾.在深圳地铁“世界之窗-赤湾”2号线对数值分析结果进行了试验验证.试验结果与数值分析结果吻合,表明该应急排烟模式的数值分析方法具有较高精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号