首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为分析上海地铁1号线某枢纽车站隧道火灾防排烟能力,分别对该站自然通风、开/关站台轨旁侧排烟风机(UPE)等机械排烟条件下,10 MW列车火灾时的车站烟气温度场、烟雾分布及浓度进行了数值模拟与分析研究。研究表明,火灾列车进入车站时必须及时开启车站排烟风机(SEF)、隧道事故风机(TVF)和轨旁侧排烟风机(UPE),方能使站台隧道内风速接近临界速度,基本消除站台隧道内烟气逆向扩散,同时烟雾限制在隧道局部且浓度较低,有利乘客疏散。目前该排烟机制下站台层部分楼梯口烟气温度仍偏高,风速未达到地铁设计规范要求,存在安全隐患,应当引起运营部门的重视。  相似文献   

2.
研究火灾烟气状态对排烟风机性能的影响,系统分析了地铁隧道火灾烟气的烟囱效应和热阻效应,将地铁隧道系统和排烟风机作为一个整体考虑,分析隧道烟气温度和密度沿程变化规律,建立隧道火灾网络模拟的数学模型,提出在隧道火灾排烟网络模拟时应以质量流量替代体积流量和风机性能的修正方法,研究了隧道火灾烟气流动模拟的数值方法,综合分析地铁隧道火灾的热阻效应、烟囱效应及烟流状态对地铁排烟风机排烟能力的影响。研究方法和结果为地铁隧道火灾烟气控制和事故应急处理决策提供科学依据。  相似文献   

3.
针对地铁长大过海区间隧道通风排烟问题,结合青岛地铁1号线瓦贵区间工程,采用理论及对比分析、数值解算等方法,分析过海区间隧道区间风井设置、火灾工况气流组织等问题。介绍青岛地铁1号线瓦贵区间概况,然后提出区间风井设置的要点,参考国内相关城市过江工程实例,采用土建排烟风道,以保证灾害工况下两车追踪人员的疏散安全。阐述陆域段防排烟和海域段防排烟方案,对于陆域段,排烟方案可以按照常规地铁区间进行设置;对于海域段,需根据区间长度,采用全吊顶或者局部吊顶排烟方案。通过研究区间火灾安全目标,设定热释放功率为10 MW,隧道临界风速为2.1 m/s,重点排烟量为80 m3/s,并绘制通风网络解算结果图,解算结果表明各区间风井的防排烟系统均满足规范要求。  相似文献   

4.
采用全尺寸热烟试验方法在深圳地铁莲花北站至少年宫站区间隧道进行机械排烟试验,测试位置位于正线隧道与联络线隧道交汇处以及马蹄形隧道单洞双线与马蹄形隧道单洞单线的交汇处。模拟车头、车尾火灾进行排烟,相邻车站隧道风机进行辅助排烟,测试各种排烟模式,观察各种防排烟模式下的排烟效果;研究复杂线路交汇处隧道烟气运动、蔓延情况和设备的工况,并测量和记录风速等数值。实验结果可对隧道防排烟设计、火灾控制提供数据支持,并为列车中部着火且停在隧道内提供疏散方案。  相似文献   

5.
以杭州地铁1号线婺江路站为例,提出在车站公共区设置中庭时,针对防排烟系统设计,采用在站厅层中庭上部四周的结构顶板下设置卷帘式挡烟垂壁,将中庭封闭成一个单独的防烟分区的方案。介绍车站公共区消防设计,包括防排烟系统,各防烟分区的排烟量计算、排烟风机的配置和排烟系统的运行模式等。通过理论计算及现场实测等方法,证明该方案在站台与中庭火灾工况时,连接站厅与站台的楼扶梯口部向下的风速满足规范要求。  相似文献   

6.
针对地铁、国铁同台驳接入铁路枢纽的地铁车站,地铁地面站台位于交通枢纽内部的特殊形式,站台层的排烟方案需根据建筑形式进行特殊考虑。对站台层的排烟方案进行对比分析,通过火灾烟气模拟,对烟气自然扩散、自然排烟和机械排烟3种排烟方案进行对比分析。烟气自然蔓延条件下,能见度无法保证人员安全疏散。由于建筑形式的特殊,无法满足自然排烟条件。为保证安全,设置了机械排烟系统。对与国铁站房结合的综合枢纽中地铁车站排烟方式,应将自然排烟的可行性纳入其初期建筑方案中优先考虑。  相似文献   

7.
基于某超长水下公路隧道的重点排烟系统,采用羽流质量流量的计算公式得出火灾产烟量,使用火灾烟气模拟软件FDS建立分析模型,对超长水下隧道重点排烟系统的排烟量、排烟效率、纵向风速、开启排烟口方案、火源上游可用疏散时间等进行了分析。首先,介绍了现有重点排烟系统及重点排烟量设计标准的相关内容;其次,提出了重点排烟量的理论计算方法;最后分析了该超长水下隧道重点排烟系统的各工况排烟效果,认为采用羽流质量流量的计算公式、排烟口设置对应的排烟效率进行理论重点排烟量计算,排烟风道、排烟风机需考虑排烟口漏风量。  相似文献   

8.
地下车站防排烟系统测试浅析   总被引:2,自引:0,他引:2  
以广州某地铁车站设置的防排烟系统为例,结合现场测试防排烟效果情况,对现场出现烟气倒灌现象及排烟不畅的原因进行简要分析,提出在地铁防排烟设计中应引起设计注意的一些事项并给出一些建议。  相似文献   

9.
2005年11月对北京地铁1号和2号线某典型单层岛式车站通风排烟系统的风速以及站台区域的速度场进行现场实测调查.根据实测结果并结合数值模拟的方法,对车站内的气流流动现状进行分析与评估.并在此基础上,进一步分析车站发生火灾时,不同通风排烟模式下烟气的速度场、温度场和浓度场的分布规律,提出车站火灾发生时的最佳通风排烟模式,以期为现行的地铁通风排烟系统运行方式以及将来的地铁通风排烟系统设计提供参考.  相似文献   

10.
采用全尺寸热烟试验方法,在深圳地铁上梅林站地下岛式站台南端进行机械排烟试验。利用区间TVF(隧道风机)、U/O(车站排热风机)对站台进行辅助排烟,并将TVF并联,对一送两排模式、两送两排模式进行排烟测试;根据模式内容开启屏蔽门、端门,测试各种模式的排烟效果,观察各种防排烟模式下站台烟气运动情况和设备的工况,并测量和记录风速等数值。结果表明,利用区间隧道风机辅助排烟,能够增加楼梯口风速,但由于对流场的扰动破坏烟气分层,使站台烟气充填区域增大,导致烟气横向流动,不利于烟气排放。  相似文献   

11.
针对周边条件受限地铁车站进行取消活塞风井分析研究,结合广州某线路建立模型,利用SES程序对取消活塞风井车站前后区间正常、阻塞、火灾工况及影响因素进行模拟计算分析。分析得出如果取消车站所有活塞风井,在车站配置两台轨排风机,且轨排风机风量不小于60 m3/s时,利用前后车站隧道风机和该站轨排风机组织气流,正常、阻塞、火灾工况的模拟计算结果均能满足规范要求。实际应用时,需考虑线路客流对区间隧道温度的影响,必要时需采取降温措施。  相似文献   

12.
地铁车站与连接车站的区间形成一个四通八达的网络,气流流向非常复杂。要想在事故区间形成有效通风,单靠设在车站或风井内的大型隧道风机往往达不到通风效果。此时,若能适时采用诱导射流设备,往往能起到事半功倍的效果。结合地铁通风设计,介绍了射流风机和诱导风机系统这两种常用的诱导射流设备的特点、局限性,以及诱导射流设备的选用,探讨诱导射流设备在地铁中的应用。  相似文献   

13.
通过对目前地铁大断面区间隧道通常采用的纵向通风的防排烟方式进行分析,针对纵向通风存在的烟气过站、车中火灾时部分乘客在烟雾中疏散等问题,提出利用区间隧道顶部空间,设置排烟风道的半横向通风方式,并针对半横向通风方式存在的问题进行分析和提出相应解决方案,所得结论可为地铁工程中大断面区间隧道的防排烟设计提供参考。  相似文献   

14.
介绍广州地铁4号线的隧道通风系统方案——采用隧道风机变频兼作车站隧道排风机,只在出站端设置活塞风道。与传统的系统方案相比,该系统方案可以大量节省初投资,并可以避免因风机全压选择偏大所带来的运行费用的增加。分析该系统方案的设计原则、设备选型原则等,可供方案推广应用所借鉴。  相似文献   

15.
基于对地铁车站火灾产物影响的分析,以广州地铁13号线白江站为研究对象,使用PyroSim软件构建地铁车站火灾排烟模式仿真模型,对地铁车站火灾烟气扩散特性、火灾产物发展趋势等进行仿真分析。在此基础上,提出以加快烟气消散速度、减缓温度上升速度和增加能见度距离为优化目标的6种优化方案,并进行仿真对比分析。结果表明:当火源位于站台中部时,在站台加设排风机可有效提升火灾排烟效率,同时在部分区域设置有效高度的挡烟垂壁可对烟气控制起到有效的辅助作用。  相似文献   

16.
为研究地铁站通风排烟系统的有效性,以某地铁站为原型,利用FDS对地铁区间隧道火灾与站台火灾进行数值模拟,得出站点内烟气温度、有毒气体浓度(以CO为主)、能见度,烟气层高度等特征参数的分布规律,分析深埋地铁站通风排烟系统的设计安全目标,探索有效性评估分析的手段和方法。  相似文献   

17.
现行规范中规定"隧道与隧道紧密相连、隧道洞口间距不超过400 m的相邻隧道统称为隧道群",根据该规定,需设置较多数量的紧急救援站和配套工程,工程投资巨大。开创性地从火灾情况下烟气蔓延时温度、可视度方面着手,采用理论分析和实际调研的方法,研究铁路隧道群划分标准及其救援站设置原则。研究结果表明:(1)隧道群中隧道口间距大于250 m时发生火灾,相邻隧道基本互不影响;(2)当隧道洞口间距小于250 m时,可以将相邻的隧道理解为隧道群;(3)隧道洞口间设置了车站的相邻隧道可不受洞口间距控制是否作为隧道群设计,可在相邻的隧道设置射流风机,控制烟雾向隧道内扩散;(4)隧道群中的紧急救援站应尽可能布置在明线上,救援站长度应依据任意车厢着火,且列车均在明线停车考虑。  相似文献   

18.
采用网络通风算法,确定铁路隧道紧急出口及隧道口救援站内防灾通风工况下的射流风机型号及数量;采用三维数值方法,研究紧急出口辅助坑道内及隧道口救援站平行导洞内射流风机安装位置对防灾通风效果的影响,提出射流风机安装位置与防护门及隧道口救援站最外侧联络通道之间的距离建议值。结果表明:对于单车道辅助坑道紧急出口,射流风机安装位置与防护门之间距离宜大于10.9倍辅助坑道断面当量直径;对于双车道辅助坑道紧急出口,射流风机安装位置与防护门之间距离宜大于7.4倍辅助坑道断面当量直径;对于隧道口救援站,平导内射流风机应安装于靠近平导出口侧,与最近横通道之间距离宜大于8.3倍平行导洞断面当量直径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号