首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
研究目的:为探讨25 m跨长沙既有磁浮简支梁桥与梁上承轨简支梁桥两种轨道梁结构的中速适应性,基于有限元原理建立两种磁浮轨道梁的有限元动力分析模型,对其自振特性进行分析;基于多体动力学理论,建立了具有120个自由度的中低速磁浮车辆动力学模型;考虑PID悬浮主动控制下的悬浮控制力,建立了完善的磁浮列车-轨道梁-控制器耦合模型。依据该耦合模型进一步开展了车辆提速后两种不同轨道梁形式下的车桥耦合振动响应研究。研究结论:(1)梁上承轨简支梁桥相对于长沙既有磁浮简支梁桥具有更优的动力学性能;(2) F轨垂向位移、桥梁跨中垂向位移及加速度值相对减小幅度分别约为57. 25%、61. 26%及70. 59%;(3)车体垂向加速度与电磁悬浮力减小幅度最高分别可达25. 53%及10. 93%;(4)本研究结果可供中速磁浮桥梁结构设计参考。  相似文献   

2.
以长沙中低速磁浮列车和25 m跨径简支梁为对象,建立包含完整悬浮控制系统和细致轨道结构的磁浮车辆-轨道-桥梁垂向耦合振动模型,编制数值仿真程序,计算车辆以80 km/h速度通过不平顺线路时车轨桥耦合动力学响应,利用已有文献测试结果初步验证仿真模型。结果表明,车体的垂向振动很小,悬浮间隙波动量不超过0. 6 mm,最大动态悬浮力占额定悬浮力的24%,中低速磁浮车辆运行平稳,电磁铁动荷载系数低。桥梁跨中垂向挠度为2. 66 mm,小于磁浮简支梁挠跨比设计限值;跨中轨缝处F轨最大垂向位移为3. 04 mm,其中包含轨排自身弹性变形产生的0. 4 mm垂向位移,约占F轨总位移的13%。梁端和跨中处伸缩接头很好地限制F轨端部变形,但F轨端部垂向加速度幅值超过2g,约为中部的4倍,这对F轨伸缩缝连接副提出较高要求。  相似文献   

3.
研究目的:本文针对目前世界上最大跨度中低速磁浮桥梁,建立中低速磁浮车辆-控制器-桥梁系统耦合动力学模型,考虑轨道不平顺的影响,研究3节编组中低速磁浮列车以不同速度、不同车辆载荷(空载、定员和超员状态)通过桥梁时车辆和桥梁的竖向动力响应,评价主跨110 m中低速磁浮连续梁车桥系统的动力性能。研究结论:(1)车体的最大垂向加速度为0.447 m/s~2,Sperling舒适度指标最大值为1.664,垂向乘坐舒适度达到"优";(2)悬浮间隙最大波动值为2.26 mm,除车速100 km/h外,其余工况波动值均在2 mm以内,悬浮系统具有足够的悬浮稳定性;(3)梁体跨中最大竖向加速度为0.065 m/s~2,远远小于限值0.5g;(4)本研究成果可为大跨度中低速磁浮桥梁的设计和应用提供参考。  相似文献   

4.
建立磁浮车—高架桥垂向耦合模型,运用车—桥垂向耦合程序,分别探讨桥梁刚度和高架桥线路的不平顺对磁浮车—高架桥垂向动力响应的影响,分析结果表明:在相同的轨道梁抗弯刚度下,随着磁浮列车运行速度的增加,桥梁的振动响应增大,但轨道梁刚度大的桥梁振动响应比刚度小的桥梁振动响应增加幅度小一些;在相同车速下,随着轨道梁抗弯刚度的降低,桥梁振动响应增大;车辆重向振动响应在轨道抗弯刚度达3 8612×1010N·m2之前,随轨道梁抗弯刚度的增大而减小,在轨道梁抗弯刚度达3 8612×1010N·m2之后,无明显影响;线路状态对车辆的动力响应有明显影响,较差的线路状态将使高架桥挠度增大,使车体垂向振动加速度明显增大。  相似文献   

5.
为研究城际铁路纵向承台式无砟轨道扣件系统关键参数取值,基于车辆-轨道耦合动力学理论,建立客车-无砟轨道-桥梁耦合动力学模型,分析扣件刚度、扣件间距对桥上无砟轨道系统动力响应的影响规律,并基于层次分析法,对桥上无砟轨道系统动力特性进行综合评价。结果表明:随着扣件系统刚度增大,钢轨垂向位移减小,车体振动加速度、轮轨垂向力、轮重减载率和桥梁振动加速度均增大;随着扣件间距的增大,轮轨垂向力减小,车体振动加速度、轮重减载率、钢轨垂向位移和桥梁振动加速度均增大;综合考虑轨道变形以及工程造价,建议扣件系统刚度为50~80 kN/mm,扣件间距为0.6~0.7 m。  相似文献   

6.
中低速磁浮交通提速是目前研究趋势,但速度的提升会影响车辆运行稳定性。为探究提速后轨道的动力响应及其适应性,通过建立中低速磁浮车-轨-桥耦合动力学模型,对更高速度下轨道的振动响应进行仿真分析,并以长沙磁浮快线为对象,测试100~140 km/h速度区间内轨道的振动加速度及振动位移。研究结果表明:轨道各结构的振动响应存在差别,沿着F轨-轨枕-轨道梁逐渐减弱,车辆对轨道的垂向冲击大多被F轨的振动及弹性变形吸收,而横向冲击则更多地传递至下方的轨枕和轨道梁;随着车辆运行速度的提高,轨道的振动加速度响应逐渐加剧,轨道梁横向振动加速度较之垂向振动加速度增加更为明显,而轨道的振动位移响应则基本未表现出与速度的相关性;当车辆的运行速度提升至140 km/h后,轨道梁的垂、横向最大振动加速度分别为2.37 m/s2和0.96 m/s2,速度提升至160 km/h时,轨道梁的垂向最大振动位移为3.55 mm, F轨内外磁极面最大高度差为0.44 mm,均在规定的限值范围内,轨道的振动响应满足要求。  相似文献   

7.
基于磁浮列车车辆—轨道—桥梁耦合动力学、电磁学、控制学和现代信号分析理论,采用数学建模与数值计算方法研究磁浮控制系统不同参数状态下车辆振动响应的非线性特征(非线性度).首先建立中低速磁浮列车—轨道—桥梁的耦合动力学模型和PID悬浮控制模型;然后编制数值计算程序,计算车辆系统在不同控制参数下的动力学响应及其非线性度指标;...  相似文献   

8.
为研究轨道交通车辆经过高架桥时的动态特性,以弹性支承块式无砟轨道为例,基于车辆-轨道耦合动力学理论,建立了车辆-轨道-桥梁耦合系统的竖向振动矩阵方程,利用MATLAB软件编写了计算程序。数值算例验证了计算程序的可靠性。通过改变系统参数,探索了轨道不平顺、车辆速度和轨道结构竖向刚度对系统竖向振动响应的影响。结果表明:轨道振动频率分布在0~500 Hz范围内,以20 Hz以内的低频振动为主;桥梁振动频率分布在0~200Hz范围内,以一阶竖向弯曲振动为主;轨道不平顺所产生的轮轨高频冲击力可达轴重的3倍,是车辆-轨道-桥梁耦合系统重要激励源之一;轮轨力和轨道加速度响应对车速的变化敏感,车辆-轨道-桥梁耦合系统位移响应对车速的变化不敏感;扣件和支承块胶垫竖向刚度应根据设计要求在40~80 k N/mm之间进行合理匹配取值。  相似文献   

9.
磁浮车辆的起浮性能是磁浮交通系统研究的一个重要方向。为探究控制参数在磁浮车辆起浮过程中对起浮稳定性与振动舒适性的影响,通过建立单悬浮刚性电磁铁模型,从PD控制下的电磁力出发,推导电磁铁起浮过程中动力响应的特征与表达式。由起浮稳定性条件与振动舒适性要求,得到悬浮间隙反馈系数KP的上下限值。将获得的PD控制参数分别应用于单悬浮刚性电磁铁模型、单悬浮弹性电磁铁模型、单悬浮弹性电磁铁—轨道梁模型以及整车—轨道梁模型中,分析起浮过程中电磁铁或车体的位移和加速度响应以及轨道梁跨中加速度响应。研究结果表明:电磁控制参数KP和KD分别调控了起浮过程中系统的刚度和阻尼;KP具有上下限值,下限由电磁铁物理参数及承担质量确定,以抑制起浮失稳现象,上限值由加速度限值、初始位移、额定悬浮间隙、电磁铁物理参数及承担质量共同确定以保证满足规范所要求的振动舒适性;起浮过程中,二系悬挂可以降低电磁铁或车体的加速度,但增大了磁浮架的振动加速度;对于所研究的案例,车轨耦合振动频率较低的情形下,轨道梁对电磁铁或车体的起浮振动影响较小。  相似文献   

10.
以真空管道交通为代表的新型交通系统以磁悬浮为主要形式,其运行速度可超过1 000 km/h。本文以磁浮列车超高速通过简支梁桥为研究对象,建立磁浮车辆-桥梁耦合系统动力分析模型,采用数值分析方法计算超高速磁浮车辆通过简支梁桥时耦合系统的动力响应,并分析桥梁跨数、结构阻尼的影响。研究结果表明:随着车速提高,系统动力响应整体增加并表现出越来越明显的时间滞后现象;超高速运行条件下车辆舒适性与安全性满足要求,而桥梁竖向振动加速度过大导致其成为行车安全的控制性指标。  相似文献   

11.
为探究EMS型磁浮列车车体振动响应的敏感波长,采用PID悬浮控制法建立了中低速磁浮试验车动力学模型,并按照相干性原理构建了不平顺与车体振动的相干函数。通过仿真分析发现:相同速度下,磁浮车前后端车体振动加速度的敏感波长存在一定的差异,前端大于后端;随着速度的增加,磁浮车前后车体振动加速度的敏感波长和相干函数的最大值几乎都在增加;随着速度的增加,车体横向加速度的相干函数大于0.8的波长范围增加。同时确定了引起车体振动的主要激励波长,其中车体的横向振动响应主要是由波长在3~9 m范围的轨道方向不平顺引起的,车体的垂向振动响应是由波长在10 m左右以及波长在2.8 m时的高低不平顺引起的。  相似文献   

12.
以某磁浮轨道交通(40+80+228+228+80+40)m大跨钢箱梁斜拉桥为研究对象,采用有限元软件ANSYS和多体动力学软件UM分别建立桥梁和磁浮列车模型。基于车桥耦合振动方法,针对2列磁浮列车相向行驶并在主跨跨中交会的最不利情形,进行列车以不同速度通过桥梁时不同梁高下车桥系统的动力响应及磁浮大跨桥梁的竖向刚度限值研究。结果表明:磁浮列车的竖向动力响应随车速的增大而显著增大,时速从40 km增大到140 km时,列车竖向动力响应增幅达到120%以上;车体竖向加速度和Sperling指标不是桥梁结构刚度限值的控制因素;磁浮列车的悬浮间隙对梁体刚度变化较为敏感,随着梁体刚度逐步增大,悬浮间隙的波动变小,梁体挠跨比减小约25%,悬浮间隙波动减小幅度达35%,悬浮间隙可作为中低速磁浮大跨桥梁结构刚度限值的控制指标;梁体挠跨比1/3015可作为磁浮大跨桥梁的竖向刚度限值。  相似文献   

13.
铁路曲线连续梁桥车桥耦合振动分析   总被引:2,自引:1,他引:1  
将曲线通过车辆和曲线连续梁桥分为两个由非线性轮轨接触力联系的振动子系统。运用车桥耦合振动理论,建立铁路车辆曲线通过模型动力方程、曲线梁桥模型及其动力方程。基于激励非线性振动的数值算法,编制曲线梁桥车桥耦合振动分析软件VCBID,进行一座铁路曲线连续梁桥车桥耦合振动响应分析。结果表明:行驶速度对曲线连续梁桥竖向振幅的影响较大,但曲线连续梁桥的竖向振幅并不总是随行驶速度的增加而增加;曲线连续梁桥的横向位移随行驶速度的增大而增大,大致呈线性关系;车辆的横向加速度、竖向加速度、脱轨系数和轮重减轻率均随车辆行驶速度的增加而增加,且均满足我国现行规范的要求。  相似文献   

14.
针对磁浮列车的弹性耦合振动现象,建立基于简支梁的单点车轨耦合模型。有关研究表明,磁浮车轨耦合振动现象,对应于数学上常微分方程的Hopf分岔问题。然而经典Hopf分岔求解方法在高阶系统计算上并不实用,为此采取了Hurwitz代数判据方法进行计算来寻找Hopf分岔点,并由此计算出了耦合振动的频率,且对结果进行了仿真验证,对进一步设计消除耦合振动的控制方法具有重要价值。  相似文献   

15.
铁路拱桥桥面过大变形将危及列车行驶和桥梁结构的安全,但已有关于拱桥变形限值标准及评判依据的研究较为少见。以某上承式拱桥为研究对象,建立桥梁全桥有限元模型并进行车桥耦合振动分析,研究温度及不同倍数徐变引起的桥面变形对列车动力响应的影响,对比分析弦测法弦长与列车在轨道和上承式拱桥上运行的动力响应间的对应关系。结果表明:仅考虑轨道不平顺激励时,30~50 m弦测法能够较好地反映高速列车的加速度响应的变化规律;上承式拱桥徐变倍数为1.6时,车辆竖向加速度响应超限;仅轨道不平顺作用下列车竖向加速度卓越频率约为1 Hz,运行在上承式拱桥上时的卓越频率在1~2 Hz,说明影响振动的波长范围由长波向中长波扩展;弦测法用于上承式拱桥时,采用20~30 m弦长;上承式拱桥温度及徐变极限变形20,25,30 m弦测矢量值为3.8,4.3,5.3 mm,对应的限值可采用3.5,4.0,5.0 mm。  相似文献   

16.
伍曾  刘学毅  王平 《铁道学报》2011,33(8):88-92
为确定道岔、桥梁的合理相对位置,深入研究快速及高速行车条件下车辆-道岔-桥梁的动态相互作用,将车辆、道岔区轨道和桥梁作为一个整体,建立车辆-道岔-桥梁耦合系统动力分析模型,用数值模拟的方法计算分析高速行车条件下道岔区轨道、车辆与连续桥梁结构的动力特性及行车安全性和舒适性。以车速350 km/h通过18号国产道岔,岔桥相对位置为尖轨尖端分别位于桥跨1/4、跨中、3/4跨及墩上,通过计算出的尖轨和心轨开口量、尖轨和心轨动应力、车体振动加速度、减载率、脱轨系数、舒适性、桥梁振幅、振动加速度和梁端转角等动力响应,确定在车辆-道岔-桥梁耦合动力条件下4×32 m连续梁桥的合理岔桥相对位置。计算结果表明,18号国产道岔铺设于4×32 m连续梁桥上时,道岔尖轨尖端位于1/4跨时综合动力效果较佳。  相似文献   

17.
为研究悬挂式单轨运营过程中桥梁和车辆的动力响应变化规律,以某悬挂式单轨双线7跨30m简支梁方案为工程背景,运用通用有限元软件ANSYS建立桥梁有限元模型,分析桥梁的动力特性;然后在多体动力学软件SIMPACK中建立车桥耦合动力学模型,研究双线列车以运营速度对开通过桥梁时桥梁和车辆的动力响应,并分析轮胎刚度和列车编组对桥梁和列车动力性能的影响。分析结果表明:双线列车以65km/h的速度对开通过桥梁时,桥梁跨中的整体横向位移响应最大值为19.03mm,表明桥墩横向刚度较小;轮胎刚度对车桥系统的加速度响应有显著影响;3辆车编组过桥时,桥梁的竖向和横向响应值明显比1辆车编组大,因此,在车桥耦合动力仿真分析时,必须考虑列车编组对车桥系统动力响应的影响。  相似文献   

18.
龚朴 《机车电传动》2020,(1):112-116
抗侧滚解耦机构是中低速磁浮列车悬浮架的关键部件。根据磁浮列车悬浮架的结构特点,提出了一种新型的交叉抗侧滚解耦机构,并基于虚拟样机技术进行了动力学仿真分析。结果表明,该机构不仅结构简单,而且性能优于传统抗侧滚解耦机构,完全适应磁浮列车运行要求,解决了抗侧滚和解耦之间的耦合和制约问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号