首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
柳州南站驼峰三部位T·JK1-C50(6+6)车辆减速器于2000年7月投入使用,采用微机自动化控制,现在的13解编量已超过设计的60%。由于柳州南站地理环境不理想,驼峰峰高较高,达到3.94m,坡长短,从一部位到二部位车辆减速器的距离只有73m,从二部位到三位车辆减速器的距离也只有185m,股道平均长度不足600m,通过三部位车辆减速器的车辆人口速度高达18~19km/h,  相似文献   

2.
柳州编组站驼峰由于受到地理环境限制,峰高达到3.94 m,从一部位减速器到二部位减速器的距离只有73 m,从二部位减速器到三部位减速器的距离也只有185 m,是名副其实的峰高脖子短,有时甚至造成溜放车辆钩钩必夹.  相似文献   

3.
柳州编组站驼峰由于受到地理环境限制,峰高达到3.94m,从一部位减速器到二部位减速器的距离只有73m,从二部位减速器到三部位减速器的距离也只有185m,是名副其实的峰高脖子短,有时甚至造成溜放车辆钩钩必夹。随着提速和行车密度加大,目前日均解编量已超过设计的40%,使减速器制动次数更加频繁,机械设备更容易达到疲劳的极限。特别是2006年,  相似文献   

4.
柳州南站驼峰于2000年进行自动化改造,间隔制动位和目的制动位使用的设备都是重力式减速器,其中目的制动位使用T.JK1-C50型车辆减速器.在近几年的现场使用中,发现存在一些缺陷,影响了减速器的正常使用,威胁溜放车辆安全,增加了工区的维修成本和维修工作量.因此,采取相应措施加以改进显得十分必要.  相似文献   

5.
六盘水南站驼峰场FTK-3型驼峰自动化控制系统属于三个部位制动,其中一、二部位的间隔制动采用T.JK非重力式减速器,三部位的目的制动采用T.JK1-D型重力式减速器,雷达采用TCL-2A型。设备自开通以来,多次出现空重混编的钩车在一、二部位减速器上脱线和前后钩车在三部位减速器上追钩的现象,严重影响了正常调车作业。为此,对驼峰设备进行了软件修改和设备优化。  相似文献   

6.
1 问题提出 柳州南驼峰FTK-3A型自动化控制系统于2000年8月投入使用,在降低行车人员劳动强度、提高作业效率方面发挥了重要作用.但在使用过程中,也曾频繁发生溜放车辆重挂的情况,严重危及行车安全,影响作业效率,成为该系统开通后存在的主要问题.具体分为溜放车辆在三部位被夹停(车速低于2.7 km/h即判夹停)与后续钩车重挂及溜放车辆在股道与停留车重挂2种情况.  相似文献   

7.
驼峰减速器控制电路改进   总被引:1,自引:1,他引:0  
武威南编组站半自动化驼峰三部位车辆减速器前后2台制动轨由同一个控制电路控制,通过接收计算机控制命令,使制动轨缓解和制动,控制溜放车辆出口速度,达到自动控制车辆溜放的目的。但在实际运用过程中发现,驼峰减速器控制电路还存在一些不足,影响车辆解体和编组效率,制约运输效率的提高,甚至危及安全生产。  相似文献   

8.
制动性能作为评价车辆减速器的重要指标,通常需在驼峰编组站通过实际测量的雷达测速曲线获得。为进一步优化减速器制动性能的获取方式,提出采用虚拟样机仿真的方法对车辆减速器建模并进行动力学分析。首先,基于车辆减速器的工作原理,结合车辆减速器的结构参数和运行状态,构建“车辆-钢轨-减速器”的刚柔耦合动力学模型;其次,以21 t轴重、走行速度5 m/s (18 km/h)的车辆为例,利用仿真模型分析减速器的制动能力。结果表明:该模型的分析结果与减速器制动性能的理论值和实测结果相吻合,可为后续减速器的设计和改进提供参考。  相似文献   

9.
自动化驼峰溜放作业过程中,因驼峰控制系统和环境因素等影响,常出现车组走行不到位而产生"天窗",导致股道溜放打靶距离不足,影响驼峰作业效率;通过对减速器制动能高的研究,确定打靶距离不足情况下减速器制动车辆安全连挂速度范围辆数,采取相应溜放方法,进一步提高驼峰解体作业效率。  相似文献   

10.
柳州驼峰计算机联锁自动化改造工程于2000年7月26日开通。该 为对既有半自动化驼峰进行改造施工,站场平面基本不变。为节省投资,大中分道岔、信号机及一部位减速器利用,二、三部位减速器更新,全站电缆及箱盒换新。所有要导通的驼峰设备都在使用中倒换。  相似文献   

11.
柳州南驼峰采用T·CL型驼峰测速雷达,在实际使用中存在一些问题. 1.雷达受邻线车干扰造成测速不准,严重时甚至会将车组夹停在减速器上. 2.站场显示器上经常出现雷达故障标志,当三部位多组减速器同时动作时,出现的几率更大. 3.测速雷达速度值忽高忽低,有时甚至测不到速度,外界环境温度越高,雷达工作稳定性越差.  相似文献   

12.
溜放车组的间隔控制直接影响着驼峰的推峰速度和解体能力.目前所采用的间隔控制方法基本上沿用着人工控制所获得的经验,自动化后可以接近或达到稳定的人工控制水平,但不能保证繁忙驼峰高速推峰的要求.本文针对驼峰间隔制动位控制问题,提出了新的控制数学模型--等间隔控制模型,探讨提高推峰速度的途径.根据数学模型进行的仿真试验获得的数据说明,当减速器控制精度保持在均方差为0.5 km*h-1时,在难易不利组合隔钩溜放时,推峰速度可以从当前的3 km*h-1~5 km*h-1提高到6 km*h-1,使平均推峰速度达到7 km*h-1以上,可以实现自动化驼峰日解体能力5 500辆以上的运营要求.  相似文献   

13.
章针对柳州南车站驼峰溜放车辆存在的超速连挂问题,提出充分利用系统功能,提高车辆三部位出口速度控制精度的方法和建议。  相似文献   

14.
采用T.JK非重力式减速器作为调速工具的自动化驼峰,在二部位对短重车的速度控制方式,不能保证对特殊类型轮对车辆的有效控制。通过分析二部位的控速策略,提出了一种改进方法,并在怀南驼峰控制系统进行了实施,提高了系统对短重车的控制能力。  相似文献   

15.
速度控制是FTK-3A系统控制的核心,其工作情况直接影响编组场的编组效率和车组的编组安全.该系统2000年8月在柳州南驼峰投入使用后,曾出现许多问题,使得车组出口速度的控制精度达不到<信号维护规则>要求90%以上的车组在±1.0km/h.  相似文献   

16.
车辆减速器超速出口原因分析与解决办法探讨   总被引:1,自引:1,他引:0  
昆明东驼峰使用的是T·JK3-A(二部位)和T·JK2-B(三部位)浮轨重力式车辆减速器。间隔制动减速器大多安装在编组站头部(一、二部位),其主要作用是保证溜放车组间的间隔,同时兼顾调整目的制动减速器的入口速度。目的制动减速器大多安装在编组线内各股道中(三、四部位),其主要作用是保证溜放车组的安全连挂。  相似文献   

17.
随着减速器调速技术在驼峰编组站的广泛应用,极大地提高了编组站列车解编作业效率,减速器已经成为大型驼峰编组站的主要调速设备.然而,由于减速器出口产生的超速车辆越来越多,严重影响了驼峰作业安全.哈中心设计并实现了一套采用高负荷可控顶和计算机控制技术组成的新型调速系统,辅助减速器控制超速车辆.实践表明,这种新型辅助调速系统是...  相似文献   

18.
文章对柳州南站驼峰目的调速系统存在的设备、性能不稳定、效率不高、安全连挂率不高等方面的问题,从减速器控制,减速顶设计、调速效果等方面进行分析,并针对系统的缺陷和不足制定了改善措施,提出了改进建议.  相似文献   

19.
驼峰空压机自动控制系统是驼峰场风动设备(ZK3转辙机、车辆减速器)的动力源,其设备质量的好坏直接影响到驼峰场溜放作业安全.  相似文献   

20.
为了探究一种分析车辆在横风作用下运行安全性的简化方法。基于标准EN14067-6中简化三质量模型和气动系数的预测公式,编制Matlab程序绘制国内某速度160 km/h动力车的风特性表,对该动力车在横风作用下运行安全性做出评估。三质量模型力矩平衡公式表明若未平衡力方向和横风风向同向,车辆运行时更容易被倾覆;由风特性表可知,该动力车在横风风速为33 m/s作用下,车辆不受未平衡力时,安全运行速度可达到200 km/h。因此该动力车过曲线遇到恶劣的横风时,应及时调整车辆运行速度到均衡速度附近,可以保证运行安全。利用三质量模型力矩平衡公式和预测公式可以简化地评价车辆在横风作用下的运行安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号