首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高速铁路电力系统中性点接地方式探讨   总被引:1,自引:0,他引:1  
分析了高速铁路环网电缆电力供电系统的特点,综合比较了系统中性点不接地、经消弧线圈接地和经小电阻接地的不同效果,在充分借鉴城市配电网络成熟经验的基础上,提出高速铁路电力系统应采用经小电阻接地的中性点接地方式.  相似文献   

2.
正电力配电系统中性点的运行方式有中性点不接地、中性点经消弧线圈或电阻接地、中性点直接接地3种形式。中性点不接地和经消弧线圈或经高电阻接地的系统通常称小接地电流系统;中性点直接接地或经小电阻接地系统称为大接地电流系统。新建成都—都江堰铁路电力工程采用了配电所调压器中性点经过小电阻接地系统进行接地。  相似文献   

3.
贯通线全电缆线路中性点接地方式的选择   总被引:2,自引:1,他引:1  
研究目的:长期以来我国普速铁路10kV贯通线采用架空方式为主、电缆线路为辅,10kV贯通线中性点采用不接地系统。高速铁路10kV贯通线大量使用电缆线路,长距离电缆线路的对地电容电流远大于架空线路,且10kV贯通线电缆线路与通信信号电缆长距离接近平行敷设,应对系统中性点接地方式进行综合研究,提出适合我国高速铁路10kV贯通线全电缆线路特点的中性点接地方式,以指导工程设计。研究结论:经调压器供电的10kV贯通线全电缆线路中性点宜采用低电阻接地,当调压器容量为250kVA及以下时,中性点可采用直接接地;低电阻接地的电阻值宜按单相接地电流小于400A、接地故障瞬时跳闸方式选择;变配电所接地网电阻值宜按R≤1Ω设计。  相似文献   

4.
介绍了10kV电力系统中性点几种不同的接地方式,分析了中性点经电阻接地方式对降低工频过电压、限制弧光接地过电压及消除谐振过电压均有良好效果,建议我国客运专线铁路10kV电力贯通系统采用中性点经电阻接地方式。  相似文献   

5.
伴随着国内客运专线铁路的快速发展,供电系统的安全可靠性要求也大幅度提高。对铁路配电设备中小电阻接地装置的运行原理、安装、操作进行了介绍,分析以往中性点接地方式和不接地方式各自的优缺点,在此基础上论述了小电阻接地装置引入铁路电力系统的必要性。  相似文献   

6.
铁路一般采用沿线设置10 kV电力贯通线和自闭线的供电模式,贯通线为架空线的10 kV配电网一般采用中性点不接地运行方式。近年来随着客运专线的建设,贯通线全线基本都采用电缆线路,单相接地电容电流很大,铁道部要求贯通线为电缆线路时,宜采用小电阻接地方式。针对2种不同接地方式,分析了10/0.4 kV低压系统中性点接地和保护接地的特点,对贯通线为架空线路和电缆线路以及单台和两台变压器时的中性点系统接地和保护接地方式进行分析并提出具体实施方案。  相似文献   

7.
分析上海局管内客运专线10 kV电力系统三种接地方式的优缺点,并结合现场应用中发现的问题及注意事项,建议客运专线铁路10 kV电力贯通系统采用中性点经小电阻接地方式。  相似文献   

8.
在高速铁路电力供配电系统中,采用全电缆贯通线方案供电系统可靠性得以大幅提高的同时,电容电流过大会带来末端电压超标、容性无功增加、系统效率降低、操作过电压、单相接地故障下的电弧过电压等一系列问题。文章针对高速铁路电力贯通线的常见配置,在正常运行和单项接地故障情况下,对电缆线路电容电流分布及其参数水平予以分析。并通过对单芯电缆和三芯电缆方案的电容电流水平差异进行理论分析和比较,得出全线路单芯电缆敷设方案在可靠性上具备明显优势的结论。并提出了在工程设计中的电抗器补偿容量计算、补偿后电容电流的校验以及供配电系统中性点接地方式选择的建议。  相似文献   

9.
温州市域铁路作为全国第一条市域铁路,其负荷点分布密、用电量大、站间距较长,环网供电系统采用了20 kV单芯全电缆线路供电。为了确保供电可靠性,电缆中间接头第一次在国内采用了20 kV绝缘型电缆中间接头,绝缘型中间接头其壳体采用高强度铜材,壳内浇筑高性能的防水绝缘密封胶,其憎水性、防爆性、电气性能优越,且采用双接地保护,充分保证供电安全。温州市域铁路运行4个月以来,供电稳定可靠,该类型的中间接头可靠、稳定、体积小,可以有效地限制电缆金属层过电压,适用多种工况条件。因此,通过20 kV绝缘型电缆中间接头在温州市域铁路环网供电系统中的成功应用,分析和研究中间接头的选型要求、性能特点以及施工工艺质量要求,为今后高速铁路及地铁工程中绝缘型中间接头的应用提供案例支撑及技术参考,对绝缘型中间接头在高速铁路及地铁工程的应用推广具有重要意义。  相似文献   

10.
对不同中性点接地方式的特点进行分析,结合客运专线铁路电力系统的具体情况,比较不同接地方式的优缺点,对中性点接地方式的选择进行分析和探讨,供电力设计、技术和管理人员参考。  相似文献   

11.
孙汝杨 《电气化铁道》2021,32(1):29-32,36
随着国内高速铁路建设里程逐年增加,高速铁路沿线电力系统建设趋于标准化.本文根据目前高速铁路沿线电力系统的设置情况,提出一种标准化模型,并根据该模型对其无功补偿、电容电流、感应电压、小电阻接地设计等进行计算,结合计算结果从5个方面阐述了全电缆线路与混架线路的区别,并提出高速铁路电力系统设计及运营中的注意事项.  相似文献   

12.
铁路10 kV电力系统电容电流计算公式是铁路电力设计中经常使用的公式。随着高速铁路和客运专线建设,铁路10kV电力系统电缆线路不断增多和10 kV配变电设备更新发展,传统的计算公式已不能适应电容电流计算分析需要,本文分析了造成公式误差的原因,重新推导出适合铁路10 kV电力系统电容电流计算公式。  相似文献   

13.
针对高速铁路10kV全电缆电力贯通线因电容效应导致的沿线电压升高及功率因数偏低等问题,基于Matlab/Simulink仿真平台,建立了贯通线仿真分析模型,仿真结果与分布参数模型计算结果基本吻合,验证了仿真模型的精确性。总结了既有线设计、运营经验及相关设计规范,在此基础上,设计了新建贵广铁路全电缆贯通线中性点接地方式和无功补偿方案。结合仿真模型,设计了无功补偿装置容量以及不同负载率运行工况下无功补偿动态调节方案,仿真结果验证了方案的合理性和可行性。现场实际运行情况表明,贵广铁路全电缆贯通线的各项运行指标均满足要求,中性点接地方式和无功补偿方案合理,可为其他类似工程提供借鉴。  相似文献   

14.
结合客运专线中电力供电系统电力贯通线采用全电缆、金属护层与综合接地线相接的设计方式,以京津城际铁路为例,从牵引供电系统角度出发,通过建立网络模型、仿真计算和分析,提出了电缆金属护层的接地方式和截面选择建议。  相似文献   

15.
城市轨道交通供电系统35kV环网电缆通常采用单芯电缆,本文将结合深圳地铁3号线工程,对35kV单芯电缆金属护层接地方式从感应电压、环流等方面进行计算对比,以确定满足工程要求的接地方式。  相似文献   

16.
随着高速铁路的快速发展以及电子化信号设备的广泛应用,铁路现场频繁出现牵引供电系统对信号设备的干扰。然而,对于不同接地方法对屏蔽电缆串扰的影响,一直缺乏系统的理论研究。本文首先对敏感电路以及屏蔽层不同接地方式对屏蔽电缆串扰的影响进行理论分析。然后基于电磁拓扑理论,建立电缆串扰问题的BLT方程,测试并仿真计算不同屏蔽、接地方式下屏蔽电缆串扰的大小。测试结果验证了仿真模型的有效性。最后对采用新型双层屏蔽结构电缆的串扰进行仿真计算。计算结果验证了该结构的有效性。  相似文献   

17.
基于国内铁路电力供电系统设计经验,借鉴我国在非洲的铁路建设工程案例,以东非内马铁路工程为例,探讨了适用于东非铁路电力供电系统的网络电压等级选择、继电保护设置、供电系统接地方式选择、变电所无功补偿设置、铁路贯通线路优化等5个关键技术,为东非铁路电力设计提供一定参考.  相似文献   

18.
高速铁路作为快捷舒适、低碳环保的运输方式已经成为世界铁路发展的重要趋势,是解决客运供需矛盾的重要手段之一。近年来,我国高铁建设获得了跨越式发展,为社会发展注入了强大的运输动力。电力供电系统是高速铁路的核心组成部分之一,起着不可忽视的重要作用。本文首先对高速铁路电力供电系统进行了论述,然后分析了系统组成和供电原则,重点介绍了提高供电可靠性的新技术。  相似文献   

19.
研究目的:城市轨道交通供电环网电缆发生短路接地故障时,故障电流在不接地端的金属护套产生幅值很大的感应电压,若超过外护套的承受能力,外护套就会被击穿,直接威胁城市轨道交通的安全运行,为研究短路接地故障对供电环网电缆金属护套感应电压影响并指导工程设计,在ATP-EMTP中建立模型,对电缆截面、接地电阻、电缆长度、电缆排列形式等因素进行仿真分析。研究结论:(1)发生单相接地故障时,电缆截面、接地电阻值、电缆长度对非直接接地侧金属护套感应电压干扰较小,故障相的感应电压最大,距离故障相越近,健全相的感应电压越大;(2)负荷侧发生单相接地故障时,金属护套感应电压基本不受电缆布置形式的影响;(3)本研究结果可为城市轨道交通供电环网电缆的设计提供理论基础,具有工程指导价值。  相似文献   

20.
研究目的:郑西客运专线是设计时速高达350 km的高标准客运专线之一.10 kV电力贯通线路如采用全电缆方案,在大大提高供电可靠性的同时,增大了电缆线路对地电容电流和相间电容电流等技术难题.通过研究与分析,提出解决方案.研究结论:针对全电缆方案引起线路对地电容电流和相间电容电流增大的技术难题,经研究提出在沿线适当位置设置三相补偿电抗器,同时系统接地采用中性点经小电阻接地方式,可使全电缆线路电容电流得到适当补偿,达到安全运行的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号