首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
针对国内地铁运营时钢轨电位过高和钢轨电位限制装置频繁动作的问题,从直流牵引供电系统建模的角度出发,通过多种情况下钢轨电位的仿真计算,研究了单向导通装置和钢轨电位限制装置对正线钢轨电位的影响规律。仿真结果表明,单相导通装置的导通会使正线和车辆段的钢轨电位升高,钢轨电位限制装置的闭合会抬高其它较远处区间的钢轨电位。  相似文献   

2.
电气化铁道重载区段因机车功率高,牵引回流大,使得钢轨电位过高现象非常明显。钢轨电位升高对人员生命安全、沿线设备、轨道信号电路、钢轨与枕木之间的绝缘等产生一系列不良影响。本文以大秦重载铁路实时同步测试数据为依据,详细分析重载铁路钢轨电位的形成机理、分布特性及影响因素。计算钢轨电位的衰减常数及半衰长度。通过AT网络短回路模型,推导出钢轨电位数学模型。基于MATLAB/Simulink仿真工具提供的通用模块,建立重载铁路牵引供电系统仿真模型,并对钢轨电位影响因素进行仿真研究。  相似文献   

3.
本文主要研究了AT供电方式下影响钢轨电位的因素。在Matlab/Simulink环境下建立了AT牵引供电系统钢轨电位的数学分析模型以及仿真模型。考虑CPW线、钢轨的泄露电导率、AT漏抗以及钢轨横连线几种因数对钢轨电位的影响,并得出了结果。  相似文献   

4.
阐述钢轨电位产生原理,结合实际工程建立模型进行理论计算及软件仿真,并对计算及仿真结果进行分析,旨在加深对地铁钢轨电位的认识,为实际工程提供参考。  相似文献   

5.
针对城市轨道交通直流牵引供电系统中杂散电流泄漏腐蚀和钢轨电位限制装置频繁动作的问题,对直流牵引供电系统再生制动能量利用给钢轨电位的影响进行了分析.建立了多列车动态运行过程中杂散电流和钢轨电位分布模型,仿真分析了杂散电流和钢轨电位的分布规律,并将其和列车功率的分布进行对比,得出了列车再生制动能量远距离利用量越大,钢轨电位增加越多.通过列车制动电流的利用量以及杂散电流最大值、钢轨电位最大值的对比分析,进一步验证了所提方法的正确性.  相似文献   

6.
城市轨道交通中,钢轨作为主要回流导体,钢轨电位过高对设备以及人员造成严重影响。针对某地铁线路的钢轨电位过高的问题,文中在长区间钢轨对结构钢筋过渡电阻测量方法的基础上,对该线路进行钢轨对地过渡电阻评估。测试结果表明地下段过渡电阻仅为1.816Ω?km,远小于标准规定要求。为分析该绝缘缺陷对钢轨电位问题的影响,文中基于线路实际情况,结合交直流混合迭代方法,进行了牵引供电计算仿真,分析钢轨过渡电阻分布对钢轨电位问题的影响,该线路过高的钢轨电位问题与地下区段过低的过渡电阻有直接关系。  相似文献   

7.
当前,城轨供电回流过程中杂散电流与钢轨电位问题突出,排流装置与钢轨电位限制装置(OVPD)作为杂散电流与钢轨电位的治理设备被广泛采用,但系统运营过程中动态排流与钢轨电位控制仿真方法及分布规律尚缺乏研究。通过建立回流系统动态排流与钢轨电位控制仿真模型,分析多区间多列车动态运行过程中全线钢轨电位与杂散电流动态分布规律。研究结果表明,单点钢轨电位控制过程中会引起其他位置OVPD连锁动作,还会大大抬高全线杂散电流水平;杂散电流动态排流过程中,全线钢轨电位与杂散电流水平均会出现一定程度的抬升,因此当前钢轨电位控制与杂散电流排流方法应进一步结合系统多点耦合干扰特性进行改善。  相似文献   

8.
对城市轨道交通交流供电系统单机车和多机车不同运行工况下的钢轨电位分布进行了计算和仿真,并得出交流供电制式下城市轨道交通钢轨电位动态分布规律。  相似文献   

9.
针对国内某地铁线路出现的车辆段和正线钢轨电位限制器(OVPD)频繁动作的问题,搭建了综合考虑正线和段场的回流系统仿真模型,研究正线和段场钢轨电位的传播机理。在某停车场及邻近3个正线车站进行了同步试验,通过对单向导通装置电压、电流以及钢轨电位的测试结果进行分析,利用供电仿真模型还原了该线路正常运营期间单向导通装置对停车场和正线钢轨电位的影响过程,得出结论:设置单向导通装置会恶化段场钢轨电位并导致OVPD动作;段场OVPD分合闸过程中会产生操作过电压,该过电压会通过单向导通装置传递至正线,进而导致正线车站Ⅰ段甚至Ⅱ段OVPD动作。  相似文献   

10.
由于电气化铁路长大隧道区段牵引供电系统特殊的电磁环境与电气拓扑结构,导致流经钢轨的牵引回流比例较大并产生过高的钢轨电位,因此需对隧道区段内牵引回流及钢轨电位分布规律开展深入研究。建立隧道区段直供带回流线方式下牵引网链式模型,计算接触网刚性悬挂方式下的牵引网导线阻抗参数,并推导多导体阻抗与导纳矩阵,利用Matlab/Simulink仿真平台建立长大隧道区段牵引供电系统仿真模型。在此基础上,分析机车运行时牵引回流在各回流通路中的分配规律,并研究综合接地系统对隧道区段钢轨电流、钢轨电位的影响。结果表明:电气化铁路长大隧道区段设置综合接地系统后,牵引回流经钢轨回流部分明显降低,并有效抑制钢轨电位抬升。  相似文献   

11.
地铁直流供电及回流系统中存在钢轨对地电位和杂散电流。钢轨对地电位对人身和设备存在直接安全隐患,杂散电流对地铁钢结构形成比较严重的电蚀。文章以具有 OVPD 装置的直流供电及回流系统为例,建立回流网集中参数电气模型,通过 multisim 软件仿真,计算钢轨对地电位和杂散电流,总结钢轨对地电位和杂散电流规律,为排流柜投入运行、OVPD 保护电压设置等提供依据。  相似文献   

12.
钢轨电位限制装置(OVPD)是地铁回流网络中重要的保护装置。构建了地铁供电网络电路模型,仿真测量了接触网短路状态下的钢轨电位、流经OVPD保护点晶闸管中的电流。研究成果可为OVPD保护装置晶闸管的选型提供依据。  相似文献   

13.
城市轨道交通直流牵引供电系统钢轨电位升高问题已成为线路运行安全的难题,其异常升高机理及分布规律尚待阐明,基于单供电区间单列车的分析方法与实际线路多列车并列运行工况差距较大。为研究城轨多列车多变电所并列运行下系统功率分配对钢轨电位异常升高的影响,建立城轨供电系统平行多导体模型,并针对回流系统模型等效及参数计算进行分析;基于有向图理论建立城轨供电系统功率分配计算方法,进行多节点功率计算;基于实际城轨线路参数,仿真计算系统多列车动态运行时的功率分配及钢轨电位,结合具体时刻分析功率分配对钢轨电位的影响。分析结果表明,钢轨电位受系统功率分配影响较大,优化系统功率分配可有效控制系统钢轨电位异常升高问题。  相似文献   

14.
地铁钢轨电位的异常是影响列车安全稳定运行的重要因素。对轨道的回流系统、钢轨电位的产生进行了简单的介绍,并且定性地分析了钢轨电位分布,分析了可能导致钢轨电位异常升高的原因,最后针对这些原因提出了相应的解决方案。  相似文献   

15.
为解决AT牵引网的钢轨电位分析问题,本文使用导体合并算法对牵引网进行合并、简化,基于扩展解耦法计算出其他导体对接地回流网络的感应电流,并使用多导体传输线理论计算钢轨电位的分布。该算法可对任意复杂的接地网络进行分析,且存储容量、计算量均较牵引网链式电路模型少。仿真结果表明:该算法与牵引网链式电路模型计算结果相吻合。根据IEC标准62128-1对钢轨电位的安全性进行了评估。  相似文献   

16.
目前,国内城市轨道交通针对钢轨电位过高的问题,多采用钢轨电位限制装置来抑制钢轨电位。当钢轨电位超过规定值时,钢轨电位限制装置会动作,将钢轨与大地直接短接。但这一保护动作造成杂散电流的泄露量明显增加。为此提出了一种新型的分级式钢轨电位限制装置。该装置在钢轨与大地之间增设了大功率小阻值电阻,不仅可抑制钢轨电位,还能有效减少杂散电流的泄漏。  相似文献   

17.
为解决钢轨电位和杂散电流治理措施开展但现场验证难度大的问题,钢轨电位硬件动态模拟平台近年来 获得广泛关注。但现有硬件动态模拟平台通常仅考虑走行轨纵向电阻变化,而忽略列车运行工况和走行轨-大地过 渡电阻的影响,无法准确再现钢轨电位随列车运行工况的动态规律。为此,提出一种考虑列车运行工况的钢轨电 位硬件动态模拟平台。首先通过直流牵引供电系统模型,分析列车运行工况对钢轨电位的影响,根据接触网、走 行轨及走行轨-大地过渡电阻的变化特性,研究包括低阻模块(LRM)与高阻模块(HRM)的钢轨电位硬件动态模拟平 台工作原理和数学模型,并提出考虑列车运行工况的硬件动态模拟平台控制策略。最后通过仿真和实验结果,验 证相关理论和控制策略的正确性。  相似文献   

18.
在地铁工程设计中,考虑钢轨对结构或对地的过渡电阻均匀会造成钢轨电位和杂散电流的泄露情况与设计不符.讨论杂散电流的产生、危害及其相关腐蚀机理,建立均匀电阻下直流供电系统杂散电流分布的数学模型;采用数学模型进行计算机仿真,对比分析不均匀过渡电阻下的杂散电流分布规律,对具体地铁工程钢轨电位和杂散电流引发的问题进行分析和研究.  相似文献   

19.
阐述了钢轨电位过高的原因及危害,对国内外相关标准中关于钢轨电位限值和最大允许接触电压的合理性进行了分析;探讨了钢轨电位限制装置保护、电压型框架保护、人体耐受电压限值三者之间的匹配关系。总结了钢轨电位过高的治理方法及今后的改进方向。  相似文献   

20.
介绍了城市轨道交通直流牵引供电系统结构,并建立了包含排流装置与钢轨限制电位装置(OVPD)的直流牵引供电系统仿真模型,分析了上述2个装置动作时对系统杂散电流与钢轨电位的影响。其研究结论可为排流装置与OVPD并柜建模与规律分析提供基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号