首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
为分析桥上有砟轨道结构在重载列车作用下的竖向动力响应,基于ANSYS建立有砟轨道—桥梁系统动力分析有限元模型,将列车荷载简化为集中力,分析研究中—活载及和谐号双机重载列车移动活载作用下桥梁和轨道结构的竖向位移和加速度动力响应。研究结果表明:轨道和桥梁结构跨中竖向位移和加速度响应在HXD1+HXD3+C80作用下最大,最大值为12.60 mm和3.27 mm/s~2,挠跨比为3.94×10~(-4),均小于规范中40 mm,350 mm/s~2和2.5×10~(-3)的要求;行车速度对轨道桥梁结构竖向位移响应影响很小,竖向加速度随着行车速度的增大而增大;增大桥梁刚度可以降低轨道桥梁结构系统的竖向位移和加速度响应,提高行车稳定性和乘客的舒适度;对既有铁路有砟轨道桥梁,应限定行车速度,采取相应的加固措施提高刚度以保证车—轨—桥系统的安全。  相似文献   

2.
为研究悬挂式单轨运营过程中桥梁和车辆的动力响应变化规律,以某悬挂式单轨双线7跨30m简支梁方案为工程背景,运用通用有限元软件ANSYS建立桥梁有限元模型,分析桥梁的动力特性;然后在多体动力学软件SIMPACK中建立车桥耦合动力学模型,研究双线列车以运营速度对开通过桥梁时桥梁和车辆的动力响应,并分析轮胎刚度和列车编组对桥梁和列车动力性能的影响。分析结果表明:双线列车以65km/h的速度对开通过桥梁时,桥梁跨中的整体横向位移响应最大值为19.03mm,表明桥墩横向刚度较小;轮胎刚度对车桥系统的加速度响应有显著影响;3辆车编组过桥时,桥梁的竖向和横向响应值明显比1辆车编组大,因此,在车桥耦合动力仿真分析时,必须考虑列车编组对车桥系统动力响应的影响。  相似文献   

3.
悬挂式单轨交通系统主梁通常为下开口钢箱梁,结构刚度小,车辆在风力作用下易发生横向摆动,从而 影响结构安全性和乘车舒适性。以某旅游专线项目 30 m 跨度简支段为工程背景,进行不同风速和不同车速下的 动力响应仿真分析。采用有限元软件建立桥梁模型,采用多体系动力学软件建立车辆和轨道模型,将车辆、轨道 系统和桥梁系统作为一个完整的系统进行联合仿真计算。采用 CFD 软件计算桥梁和列车的静力三分力系数和风 荷载,并将静风力叠加到模型中形成风-车-桥耦合振动模型。计算结果表明,桥梁的横向动位移和竖向动位移随 风速的增大而增大,横向位移变化更加明显,但随车速的增大,动位移变化不明显;车辆的平稳性随风速和车速 增大而逐渐降低,车辆的横向平稳性对平均风更加敏感;所有工况中,车辆的竖向和横向 Sperling 系数最大值分 别为 2.49 和 2.62,表明运行车辆具有良好的平稳性。基于通用有限元软件和多体动力学软件进行风车桥耦合动力 分析的联合仿真方法是可靠高效的;研究成果可为悬挂式单轨交通系统的抗风设计与应用提供参考。  相似文献   

4.
为考虑拱肋内倾角对大跨度钢管混凝土拱桥的动力特性及车辆走形性的影响,以某主跨为240 m的钢管混凝土提篮拱桥为例,运用结构动力学以及有限元原理,分别建立了3种不同内倾角度(7.5°,8.5°,9.5°)下的桥梁动力分析模型和车辆模型,由动力学势能不变值原理"与形成矩阵的"对号入座"法则建立空间振动方程,并对3种情况下的车桥耦合空间响应进行了计算分析。研究结果表明:桥梁横向自振频率随拱肋内倾角的增加而明显增大;竖向自振振动频率随内倾角度的增大而减小;列车通过桥梁时,不同内倾角度下拱顶竖向位移和加速度的变化很小,而横向位移、横向加速度均随着内倾角度的增大而减小;车辆的动力响应对内倾角的变化不敏感。  相似文献   

5.
采用23个自由度的多刚体车辆动力分析模型、空间梁单元模拟桥梁结构,据位移协调原理,建立了广州市轨道交通四号线四跨变截面连续刚构特大桥沙湾大桥车桥耦合时变动力分析模型,并将轨道的竖向不平顺和方向不平顺作为系统的激振源,编制程序计算地铁列车通过时的车桥耦合振动响应。计算结果表明:在地铁列车常用编组和运营条件下,车辆与桥梁的振动响应随着列车速度的提高而缓慢增大;列车舒适性与安全性各项指标均能满足要求;桥梁具有足够的竖向刚度与横向刚度,所得结果可供设计参考。  相似文献   

6.
"抱轨"行驶是跨座式单轨交通的一个显著特点.针对单轨列车与双层桥面钢桁梁斜拉桥的车桥耦合动力性能,以主跨468 m牛田洋大桥为工程背景,基于ANSYS及SIMPACK等软件建立车桥空间耦合动力模型开展联合仿真,研究不同行车速度、不同列车特性下的车、桥动力响应,并对行车安全性等进行了评估.研究结果表明:列车在通过桥梁时的竖向动力效应较弱,位移冲击系数约在1.1以内,且桥梁竖、横向位移响应均与车速无显著联系;竖向位移随过桥车辆数目的增加而增大,横向位移在单线行车时明显大于双线对开工况;桥梁与车体振动加速度均随车速递增,且车体横向振动程度大于竖向;跨座式单轨列车在列车正常行驶速度100 km/h以内通过该大跨度斜拉桥时,桥梁的动力性能优良,桥上列车具备良好的乘坐舒适性.  相似文献   

7.
研究目的:为研究大轴重列车作用下桥梁结构的动力响应,本文以30 t大轴重列车和重载铁路线上常用跨度32 m预应力混凝土简支T梁为研究对象,结合现场实测数据,基于多体动力学理论和有限元法建立大轴重列车-轨道-桥梁三维耦合精细化有限元模型,并验证有限元模型的准确性。通过计算大轴重列车作用下桥梁结构的动力响应,分析大轴重列车编组长度、列车轴重、列车运行速度以及桥墩高度等因素对桥梁结构动力响应的影响规律。研究结论:(1)当列车编组数达到6节以后,列车编组数增加仅影响桥梁结构的动力响应持续时间,不会对桥梁结构的动力响应峰值产生影响,在计算长大编组列车通过中小跨度桥梁时可简化为6节编组进行计算;(2)桥梁结构的动力响应与重载列车的轴重有较明显的相关性,桥梁跨中竖向位移和跨中横向位移均随着列车轴重的提高而增加,增幅呈近似线性增加的趋势;桥梁跨中竖向加速度和跨中横向加速度均随着列车轴重的提高而逐渐增加,且增幅越来越大;(3)桥梁结构的动力响应均随着列车运行速度的提高而增加,跨中加速度响应随列车运行速度的提高增幅比跨中位移响应增幅大;(4)桥梁墩高的变化对桥梁结构的竖向动力响应影响较小,而对横向动力响应影响较大;(5)本研究成果可为重载铁路桥梁的设计和既有线铁路桥梁强化改造提供参考。  相似文献   

8.
为研究高速列车制动对"站桥合一"客站纵向动力响应的影响,利用自主研发软件TTBLS-DYNA建立列车-轨道-客站耦合系统纵向动力模型。分别采用有限元方法建立轨道-客站三维空间模型,采用刚体动力学方法建立车辆纵向动力模型。依据动车组的制动减速度特性曲线,通过数值积分方法求解车辆和客站耦合动力方程,进行耦合系统纵向动力响应分析,并以天津西客站为例进行车-站纵向耦合振动分析。研究结果表明:高速列车站内制动对客站结构纵向动力响应影响较小,列车停车瞬间轨道层及高架层纵向位移及加速度达到最值;双线反向制动工况下客站各层结构纵向位移及加速度较单线制动小;车致振动沿楼层高度方向传递过程中,振动加速度逐渐衰减,屋顶层加速度最小;客站各层纵向位移及加速度最大值均随列车制动级别的增大而增大,轨道层加速度最大值增幅最为显著。  相似文献   

9.
为研究制动荷载作用下桥上无砟轨道动力响应问题,建立车辆子系统模型和无砟轨道-桥梁子系统模型。根据高速列车制动减速度特性曲线确定列车制动力,利用Hertz理论求解轮轨力,通过交叉迭代法求解有限元数值方程。以4节编组的CRH2型动车组在桥上无砟轨道制动为例,进行系统动力响应分析。研究结果表明:轨道、桥梁结构的纵竖向位移和加速度均逐层递减,梁端处轨道结构的竖向振动比跨中处大;列车制动过程中列车速度逐渐减小引起轨道结构的竖向动力响应也减小;列车停车后,轨道结构和桥梁的纵向位移反向突变、纵向加速度突变,随后都有自由衰减的趋势;列车停车瞬间,列车和桥梁出现纵向最大振动。研究成果可为桥上无砟轨道的设计提供理论支持。  相似文献   

10.
集包第二双线铁路大黑河4号大桥为系杆拱桥,主体采用钢管混凝土结构.采用大型结构有限元分析软件建立三维模型,分析桥梁自振特性;从车-桥系统运动方程、动力性能、车辆走行性能等方面对车-桥动力响应计算结果及性能进行分析和评价;对德国ICE-3型动力分散独立式高速列车以不同速度通过桥梁时的动力响应和车辆走行性能进行数值计算.根据计算结果对桥梁结构和运行车辆安全性作出评价,为改进同类拱桥设计和结构提供参考.  相似文献   

11.
直线电机列车-高架桥系统动力相互作用分析   总被引:4,自引:0,他引:4  
采用模态综合技术,建立直线电机轨道交通系统的车桥动力相互作用分析模型,对直线感应电机轨道交通系统的电磁力的产生及其对列车、高架桥梁的动力作用进行理论分析和研究,指出这是进一步研究城铁高架桥梁的动力响应以及直线电机列车在桥上的运行安全问题的一种可能途径。  相似文献   

12.
桥梁结构刚度对高速列车—轨道—桥梁耦合系统的动力学特性具有重要的影响,直接关系到桥上列车的行车安全性和运行平稳性。基于列车—轨道—桥梁动力相互作用理论,以高速铁路常用的简支箱梁桥和双块式无砟轨道为研究对象,采用列车—轨道—桥梁动力学仿真通用软件TTBSIM2.0,研究桥梁结构刚度对高速列车—轨道—桥梁耦合系统动力性能的影响规律。结果表明:当桥梁梁体的刚度或者桥墩的横向刚度不足时,车辆和桥梁的相关动力性能指标将随着刚度的减少而急剧增大,严重影响列车过桥时的安全性和平稳性;当梁体垂向刚度不足时,有可能会引发车桥共振现象;当桥梁结构刚度满足设计规范要求时,车桥系统动力响应指标随刚度变化不明显,此时行车速度和轨道不平顺成为影响行车安全性和平稳性的主要因素。  相似文献   

13.
槽形梁道碴桥面是适用于钢桥的一种桥面新形式,为研究该种桥面的钢桥动力性能,以某大跨度钢桁拱桥为研究对象,将列车、桥梁视为联合动力体系,建立了列车与大跨度钢桁拱桥的车桥耦合动力分析模型.在建立桥梁的有限元分析模型时,对该桥所采用的槽形梁形式桥面选用了梁格法来建模.计算桥梁的自振特性;采用计算机模拟方法,计算了ICE高速列...  相似文献   

14.
考虑非一致地震输入的车-桥系统动力响应分析   总被引:1,自引:0,他引:1  
针对地震对列车在高速铁路桥梁上走行安全性的影响,将桥梁在地震作用下的运动方程和车辆振动方程通过桥梁子系统与车辆子系统间的非线性轮轨接触关系联系起来,建立可考虑行波效应影响的长大跨度桥梁—列车耦合系统的地震反应分析模型。利用车—桥系统地震反应分析程序,对高速列车在不同特征地震荷载作用下通过某高速铁路连续梁桥进行仿真分析,研究列车速度和地震波行波效应对车—桥系统动力响应的影响。研究结果表明:地震波行波效应对车—桥系统的振动响应有重要影响,并不总是地震波行波速度越大,车辆的动力响应的计算结果越接近一致激励时的相应值;在进行大跨度连续梁桥车—桥系统的地震反应分析时,应按桥址处的实际场地土特性考虑地震波行波效应的影响;地震荷载作用时车体的横向振动加速度以及各项安全评价指标均随列车速度的提高而增大,在评价地震作用下高速铁路连续梁桥上列车的走行安全性时,必须考虑列车运行速度的影响,给出了确保地震发生时高速列车在桥上安全运行的临界速度限值。  相似文献   

15.
为分析列车通过时桥上半封闭式声屏障的动力响应,采用Midas建立了桥梁和声屏障的有限元模型,分析结构的自振特性。基于车辆-轨道-桥梁动态相互作用原理,建立列车-轨道-桥梁/声屏障动态相互作用模型,对列车过桥时的安全性与舒适性进行数值计算,研究半封闭式声屏障的动力响应特点。结果表明:在桥上设置半封闭式声屏障后,桥梁和声屏障整体结构的刚度有所变化;列车以不大于220 km/h的速度过桥时,车辆的安全性指标均合格,车辆的平稳性指标为优秀,桥梁的动力响应指标满足规范要求;桥梁与声屏障连接处的边界条件对声屏障动力响应的影响显著。  相似文献   

16.
弹性支承块式轨道桥梁结构地震响应分析   总被引:2,自引:2,他引:0  
为研究弹性支承块式轨道结构对地震作用下桥梁结构位移、内力的影响,以某3跨预应力混凝土连续箱形高架轨道桥为例,利用Midas Civil软件建立考虑和不考虑具体轨道结构形式的高架轨道桥梁有限元模型,分析典型地震波作用下该高架桥梁的地震响应。结果表明:考虑具体轨道结构形式模型的连续梁桥主梁的位移、跨中正弯矩、支点负弯矩及支座处剪力均明显小于不考虑轨道结构形式模型的相应值,对主梁结构来说,设计中不考虑轨道结构形式是一种偏安全的设计方法,而考虑轨道结构模型的桥墩墩顶位移可能大于不考虑轨道结构形式模型的相应值,为安全起见,在进行轨道桥梁桥墩的抗震设计时应当考虑具体轨道结构形式的影响。  相似文献   

17.
在对国内外研究成果进行简要介绍和分析的基础上,本文按一系悬挂和变摩擦阻尼建立货车的动力计算模型;轮轨作用力采用Kalker的线性接触理论并按Vermeulen-Jnhnson的非线性理论对其进行修正的方法;作为车桥系统外部激励的抖振力的时域随机风荷载按Shinozuka理论进行模拟。以某高墩连续梁刚构桥为对象,对考虑横风作用时货车的行车安全性进行了对比分析。计算结果表明:在横风作用时,背风侧的脱轨系数和轮轨作用力增加,轮重减载率减小,迎风侧的脱轨系数和轮轨作用力有所减小,轮重减载率增加;与无风时相比,横风的作用将导致车辆的行车安全性较为不利,这一结论与文献[2]的试验结果基本一致。  相似文献   

18.
云桂铁路南盘江大桥为上承式混凝土拱桥,大桥建成后,相关单位利用动态检测方法获取了23t轴重货物列车和CRH2列车以不同速度通过该桥时桥梁结构的多项动力响应,并分析评价了桥梁的动力性能。为探究动力仿真分析方法的模拟效果,以南盘江大桥为背景,采用MSC系列软件建立列车-轨道-桥梁动力学仿真模型,分别用美国五级谱和德国低干扰谱作为货车和动车组的轨道不平顺激励,模拟列车过桥的全过程,获得桥梁结构的动力响应规律,并将仿真分析结果与实测结果进行对比验证。对比结果表明:大桥一阶横弯与竖弯频率计算值分别为0.30 Hz和0.576 Hz,与实测的横弯频率0.33 Hz、竖弯频率0.59 Hz接近;分别采用美国五级谱和德国低干扰谱,其波长和幅值能较好地模拟货物列车和动车组通过南盘江大桥的动力响应,数值仿真计算和实车动态测试的结果接近。  相似文献   

19.
高墩大跨铁路桥梁动力特性分析   总被引:1,自引:0,他引:1  
近年来,随着我国铁路桥梁的迅速发展,桥梁的跨度越来越大,桥墩越来越高,体系越来越柔。高桥墩体自重大、柔度大、阻尼小。本文以某大跨高墩连续刚构桥为计算模型,应用通用软件Midas/Civil建立了三维动力有限元模型,对该桥进行动力特性分析,得出该桥的前十阶振型。并就加弹性阻尼器对结构的动力影响进行分析,得出加弹性阻尼器能够改变结构的动力性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号