首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 889 毫秒
1.
基于盐城火车站无站台柱雨棚风荷载的风洞试验结果,选取典型风向角,研究了平均风压系数和脉动风压系数的分布特性,指出雨棚表面基本为负压控制,且边缘部分压力系数较大。该项研究为进一步探讨无站台柱雨棚的风荷载特性和结构抗风设计提供了依据。  相似文献   

2.
高速铁路桥上的防风屏障会受到列车运行产生的脉动气冲力作用,防风屏障在脉动气冲力作用下的振动是防风屏障设计必须考虑的问题。本文建立了防风屏障有限元模型,考虑自然风荷载、结构自重和列车引起的脉动风荷载,以兰新铁路第二双线桥上防风屏障为实例,分析防风屏障各关键节点处的振动响应。结果表明:考虑自然风及车致气动力的脉动特性会显著增加防风屏障的动力响应;分析车致气动力对防风屏障的结构响应时应将自然风基本风压作为静载同时计算;另外应特别关注挡风板的振动,其响应远高于立柱。  相似文献   

3.
针对350~400km·h~(-1)高速列车作用于声屏障的脉动风荷载问题,基于三维非稳态的k-ε两方程紊流模型,采用移动网格的数值仿真计算多种车速、多种屏轨距条件下列车通过声屏障区域的动态风场过程,得出声屏障各部位的脉动风荷载时程曲线等各类结果数据及多种参数的影响规律,并与实测资料进行对比分析。结果表明:300~400km·h~(-1)列车脉动风荷载随列车速度的增加而加速增大,与声屏障至线路中心距离呈现近双曲线性反比关系,风压值分布沿声屏障高度呈现底部大、顶部小的规律;理论计算风压值及其与实测列车脉动风荷载时程曲线形状、参数影响规律等均相符较好,部分计算风压量值略大于实测值,原因在于计算中列车及声屏障模型光滑表面的模拟方法忽略了实际粗糙表面的风阻等因素。在仿真与实测的基础上,提出380~400km·h~(-1)高速列车脉动风荷载的最大风压取值建议及广义振动频率范围1.96~4.79Hz等动力设计建议。  相似文献   

4.
刚性模型测压风洞试验测试得到的测点风荷载一般无法直接用于结构抗风设计及风致响应计算。以结构表面风压测点作为控制点,通过多项式插值得到非结构网格并将测试得到的测点风荷载匹配至网格的节点和虚面上,以此作为计算分块风荷载、整体风荷载、节点风荷载及风致响应风荷载输入的依据。以某大跨度空间结构为例,说明了该方法的可行性、准确性和通用性。  相似文献   

5.
针对高速铁路封闭式声屏障在列车风与横风作用下的风压荷载问题,采用中南大学自主研发的横风-移动列车风洞试验系统,研究横风和列车风作用下声屏障的风压荷载分布.研究结果表明:圆形断面封闭式声屏障外壁风压系数分布沿环向先减小后增大,与单圆柱的风压分布大致相似,给定风速下最大负风压系数-3.38;单车通过声屏障时脉动风压幅值与车速平方近似成正比,同一截面风压沿环向非均匀分布,近侧的压力峰值高于远侧,最大相差16%;2车交会时,交会区域风压峰值明显增大且极值风压出现在交会截面,其值约为单车通过时极值风压的2倍.  相似文献   

6.
设置新型轨道交通混凝土声屏障是一种非常有效地解决城市轨道交通噪声污染的方法。新型轨道交通混凝土声屏障单元板具有良好的抗风性能是保证声屏障正常工作性能和吸音降噪效果的关键。通过参考最新行业标准和国内外最新计算方法,确定了在正常工作状态下声屏障单元板所需承受的列车气动风压脉动力值。借助有限元软件ANSYS对混凝土声屏障的抗风压性能进行有限元分析,由模拟分析结果表明:在背板和面板承受3.5kPa风荷载时,混凝土的最大拉应力为6.205MPa,钢筋的最大拉应力为17.035MPa,单元板跨中挠度最大为4.96mm;承受最大风荷载7kPa时,混凝土的最大拉应力8.278MPa,钢筋的最大拉应力为22.798 MPa,单元板跨中挠度最大为6.93mm。计算值均小于规范标准值,完全符合工程实际应用要求。  相似文献   

7.
高速铁路接触网风致振动与风偏的动态计算方法   总被引:2,自引:1,他引:1  
利用ANSYS软件建立接触网弹链、简链风致响应有限元模型,从导线弛度、张力及弹性角度,验证有限元模型的准确性;采用谐波合成法(WAWS)模拟针对接触网结构特点的脉动风场;计算系统在风荷载作用下的动态响应,利用空气动力学理论计算接触网平均位移,采用时程分析方法计算接触网动态位移,并将二者叠加得到接触网风致响应总位移。通过开展接触网气动弹性风洞试验,结果表明:提出的基于有限元的风致振动与风偏的动态计算方法与风洞试验结果基本吻合;该方法计算结果准确,具有较好的工程应用价值。  相似文献   

8.
以高速铁路声屏障为研究对象,介绍作用于声屏障的高速列车脉动风荷载的特性.分别建立单块混凝土声屏障及金属立柱声屏障的实体有限元模型,并建立用于时程响应分析的20 m长板壳有限元模型.实体、板壳声屏障模型的自振特性分析结果表明,两者的基频结果相符较好,基频均在9.0 Hz以上,远离高速列车的2.0~4.0 Hz的脉动频率.两者模型差异导致2阶以上的自振频率存在一定差异.高3.05 m整体式混凝土声屏障的列车脉动风荷载的时程响应分析表明,声屏障的侧向最大位移与最大应力均较小.除透明板振动稍大外,结构动力性能良好,无共振现象.  相似文献   

9.
基于谱分解法的自锚式悬索桥桥梁风致抖振计算分析   总被引:3,自引:0,他引:3  
自锚式悬索桥是一种大跨度柔性结构体系,该桥型经受脉动风作用时容易发生较大的抖振响应,对于该种桥型进行风致抖振的研究探讨具有较强的实际意义。以自锚式悬索桥武汉汉江六桥为工程实例,进行风致抖振分析。具体分析流程为:通过计算流体力学软件对桥梁进行气动分析,得到桥梁抗风分析方程中的重要参数静力三分力系数。通过对桥址处风场资料的分析,采用规范规定的风谱密度函数,利用谱分解法将脉动风谱转换成脉动风时程,同时结合准定常气动理论将风时程转换成风力时程实现气动力的时域化。利用有限元软件建立桥梁的空间模型并分析自锚式悬索桥动力特性。通过自编数值程序和有限软件的结合将风力时程加载在桥梁模型上,实现桥梁在时程风力作用下抖振响应的数值模拟。其计算结果表明:该桥在风致抖振作用下性能良好,结构具有良好的气动性。结合计算流体力学软件、数值分析软件、有限元软件的桥梁抗风计算方法和模式,可以在其他自锚式悬索桥风致抖振计算中参考使用。  相似文献   

10.
随着铁路工程的发展,出现了越来越多的大跨度铁路客站站房及雨棚。由于站房及雨棚结构的复杂性、唯一性及自身大跨度等显著特点,其风荷载值并不能从现行的《建筑结构荷载规范》中获取,而准确合理的风荷载取值对确保结构安全和控制工程造价又十分重要,所以有必要对其进行风洞试验。以某铁路客站站房及雨棚为工程背景,试验选取刚性模型作为研究对象,测定表面风压系数,并通过有限元软件分析风致动力响应,计算出节点位移和杆件内力的风振系数,最终得出站房和雨棚结构的等效风荷载值。结果表明等效风荷载值均顺风向递减,且在迎风侧的屋面边缘处值很大。  相似文献   

11.
接触网参数对接触网风致响应的影响及风洞试验验证   总被引:2,自引:2,他引:0  
大风作用会使接触网发生更大更复杂的振动与风偏,为给大风区接触网的防风设计提供科学依据,采用有限元计算与风洞试验相结合的方法进行研究。利用ANSYS软件建立包括支撑结构和悬挂部分的有限元耦合模型;采用谐波合成法(WAWS)模拟针对接触网结构特点的脉动风场;通过计算不同接触网参数组合方案在风荷载下的风致响应位移,定量分析得出悬挂类型、张力组合、跨距对接触网风致响应的影响。接触网气动弹性风洞试验结果表明,接触网参数对风致响应的影响的研究结果正确。研究成果应用于兰新铁路第二双线大风区接触网系统方案设计和技术参数选择,并作为主要理论支撑之一,形成了首个国内外铁路电化行业的风区接触网装备技术条件。  相似文献   

12.
南疆铁路至兰新高铁枢纽位于新疆著名的三十里风区,当地多次发生大风导致列车倾覆事件。本段桥梁是高铁与普铁联络线,针对高铁及普速铁路梁的特点综合分析,选用适宜梁型,结合挡风结构受力特点,运用流场数值计算、风洞试验、动力学仿真等方法展开研究,对梁体局部改造加强。通过分析强风场中列车受力特点,以及挡风屏结构高度等对风场影响的规律,在挡风屏设圆形及椭圆形交错开孔,通过紊乱气流自身损耗风能。人行道步板改用透风结构,减弱桥面顶板气流反冲力,改变列车附近的局部风场,降低横向风力对列车的冲击作用,对列车的安全运营提供了有力的保障。研究结论:(1)挡风结构制造紊流消耗有害风向,防护作用明显好于靠加强结构自身强度来抵抗风害;(2)对于气流进行疏导,对风场势能进行牵引,改变风荷载影响作用显著;(3)铁路桥梁结构防风设计,应该以风场势能的研究为主方向,局限于平面的受力关系研究势必会影响防风设计的思路。  相似文献   

13.
高速铁路隧道壁面气动荷载是隧道结构破坏的主要诱因之一,了解并掌握其特征对高速铁路隧道结构设计与安全营运具有重要的理论意义与工程价值。通过论述高速铁路隧道壁面气动荷载特征与现场实车测试、动模型试验以及数值仿真模拟三种研究手段的技术现状与未来发展趋势。总结归纳得出:(1)列车驶入隧道前,壁面气动荷载峰值小、持续时间短;列车在隧道内行驶时,壁面气动荷载表现为正负峰值不等的不规则变化规律;列车车尾驶出隧道后,气动荷载表现为周期性正负峰值交替的衰减规律。(2)三维光纤贴壁线性布置技术利于实现隧道全断面、全长测点布置,且具有重复利用率高,试验费用低、工作量少等优点,可作为现场实车测试过程中数据采集系统的一个重要比选方案,电机控制能进一步提高模型列车运行速度的控制精度,可作为未来动模型试验系统动力控制的优选技术之一。  相似文献   

14.
结合我国重载铁路隧道结构特点,利用大型有限元软件ANSYS建立围岩-隧道结构-轨道结构三维动力分析模型,采用移动荷载模拟重载列车竖向动荷载,着重分析了重载列车荷载在隧道基底的分布、传递特性以及隧道结构内力的空间分布特性。  相似文献   

15.
对于高速铁路大直径盾构隧道,研究并讨论列车振动荷载对隧道结构安全性具有重大意义。以佛莞城际铁路狮子洋隧道工程为背景,基于ANSYS有限元方法,采用列车-轨道系统确定列车荷载后,计算不同工况下高速列车振动荷载对软硬不均地层大直径盾构隧道结构的影响,选取不同计算模型对比分析往复荷载作用下隧道地基累积变形的特征。计算表明:(1)双线同时有列车荷载作用时,产生的动力响应更为显著,且与两车间隔的时间有关,当间隔时间为振动周期的倍数时,振动效应最大;(2)较之主应力,列车振动对隧道位移和加速度的影响更加明显;(3)双线列车振动发生时间的偏差会引起响应的振动时程曲线产生约等于Δt的偏移现象,且振动幅值也会偏移,结构的动力响应与地层的动力响应(位移、加速度和主应力)存在相似的变化规律;(4)随着列车运行时间的累加,隧道基底土的累积塑性变形逐渐增大,但随着时间推移后期的增长速率明显减慢;(5)针对佛莞城际铁路狮子洋隧道,近东莞侧隧道基底以砂土为主,建议采用Anand J.Puppala模型进行累积塑性沉降计算;近广州侧隧道基底以淤泥为主,建议采用DingQing Li模型进行累积塑性沉降计算。  相似文献   

16.
为防止高速列车振动引起广深港高铁狮子洋大断面盾构水底隧道软土地层液化风险,轨道结构采用减振板式无砟轨道。为考察减振措施效果,分别建立列车-轨道模型、隧道-地层有限元模型,分析列车荷载作用下隧道结构及周围土层动力响应及分布规律,对比分析减振和非减振两种工况下地层动剪应力和加速度,结果表明,采取减振措施可有效降低软土地层液化风险,提高安全储备,达到了预期的目标。研究成果对隧道穿越软土地层设计具有指导意义。  相似文献   

17.
随着列车运行速度的提高,隧道空气动力学问题越来越突出。2005年5月在遂渝线进行了高速列车过隧道试验,对列车和隧道内空气压力变化、隧道内列车风和隧道口微气压波等参数进行了测试。结果表明:隧道内列车风风速与列车运行速度成线性关系,并且与车头和车尾的外形、列车长度、隧道截面面积及其长度等因素有很大关系;隧道壁面压力近似与列车运行速度的平方成正比;同等速度条件下,钝头型的25T提速客车引起的隧道壁面压力变化幅值比流线型动车组的大38.6%;由于双层集装箱列车较高且集装箱间的间距较大,致使同等速度下引起的隧道壁面压力变化最大;隧道入口的压力变化明显大于隧道出口的压力变化,在隧道口附近,三维效应非常明显,且每种车型均不同。因此,将列车和隧道耦合起来设计出合理的隧道和列车截面形状,是减小隧道空气动力学效应的有效途径。  相似文献   

18.
列车荷载作用下软土地区盾构隧道的长期沉降问题不容忽视。针对杭州地铁1号线越江隧道工程,基于经验拟合的理论计算公式,并结合动三轴试验、有限元分析等手段,计算分析隧道下卧土层的不排水循环累积塑性变形和累积孔压消散引起的固结变形;采用分层总和法对隧道的车载累积沉降进行计算,分析得到隧道的长期沉降规律,以期为隧道的长期沉降控制提供指导。  相似文献   

19.
青藏铁路多年冻土区路基结构的动力分析   总被引:1,自引:0,他引:1  
研究目的:本文对青藏铁路冻土路基在列车荷载下的结构动力进行了分析研究,为多年冻土区路基工程设计和铁路运营安全分析提供了依据。研究方法:以青藏铁路清水河多年冻土区试验段路基结构为工程背景,利用列车——轨道二维动力模型得到的道床底部列车荷载激励曲线,对冻土路基结构进行有限元时程反应分析,探讨冻融状态下路基的列车振动荷载效应。研究结论:无论是暖季融化还是寒季冻结状态,列车振动荷载产生的土体压应力都大大高于静荷载,车速对土体动应力反应有明显影响;冻结状态下,路基中下部土体的动力反应较大,而暖季融化时路基顶部土体对动应力有较显著的放大作用,因此,在工程设计和运营养护时应有针对性地对结构进行加强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号