首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
列车振动作用下沉管地基砂土液化可能性研究   总被引:5,自引:0,他引:5  
王秀英  刘维宁 《铁道学报》2004,26(1):96-100
根据土动力学和轨道动力学的原理 ,利用列车 轨道系统动力分析模型和提出的隧道结构 地层动力分析模型 ,分析高速列车作用下沉管地基的动力响应 ,根据模型计算了京沪高速铁路南京上元门沉管隧道地基在高速列车作用下的动剪应力分布 ;通过对现场地质资料的回归分析得到了沉管隧道 3个典型断面的地基抗液化剪应力 ,据此分析了沉管地基在高速列车作用下的液化可能性 ,以便为沉管隧道的进一步设计施工提供参考  相似文献   

2.
减振垫轨道是城市轨道交通高等减振措施中常用的一种轨道结构。为了研究减振垫轨道结构对车致环境振动的影响,首先对减振垫轨道的模态进行分析,其次建立了地铁列车-减振垫轨道-隧道-土体-建筑物系统模型。该系统模型分为两个子模型,将子模型1中的竖向轮轨力作为子模型2的外加激励,计算分析了轨道板、隧道壁、地面和楼层的车致振动加速度特性与振级特性。研究结果表明:由列车运营引起的振动在传递途径中,竖向振动加速度由轨道板到隧道壁的衰减量远大于由隧道壁到地面的衰减量,楼层和地面的竖向振动加速度水平基本相当;轨道板、隧道壁、地面和楼层的1/3倍频程加速度级两个峰值对应的中心频率31.5 Hz、80 Hz与轨道板第5阶、第10阶主振型的固有频率有关;减振垫轨道的中心频率介于3.15 Hz和8 Hz之间的减振效果较好;隧道埋深大于11 m,以及采用减振垫轨道结构的情况下,隧道正上方地面和楼层的Z振级最大值均小于70 dB,能够满足环评标准的要求。  相似文献   

3.
阐述铁路隧道振动产生原因和传播特点.从理论分析模型、隧道结构振动响应、隧道地基土振动响应、环境振动响应及减振措施等方面,综述铁路隧道振动问题研究的进展.认为目前研究中存在的主要问题是:计算模型不完善;缺乏对隧道结构长期动力特性的研究、对高速铁路隧道动力响应的试验研究;减振措施缺乏针对性.指出今后的研究工作重点应是:将材料损伤本构关系引入到隧道振动响应数值模型中,建立以轨道、隧道和围岩为一体的、考虑结构损伤在内的完整数值模型,并在此基础上分析研究隧道结构长期动力特性;针对高速铁路隧道开展现场测试、动力模型试验;采用数据分析与模拟试验相结合的方法,研究各工况的环境振动响应,提出针对不同地层和结构埋深的最优减振措施.  相似文献   

4.
以神华新建准池铁路风洼梁隧道上跨万家寨引黄入晋工程南干线6#隧洞立体交叉为背景,重点考察了铁路隧道运营期间,风洼梁隧道中货运列车振动荷载对下方引黄隧洞结构的影响。通过建立"列车-轨道"动力相互作用系统、"隧道结构-地层"三维模型进行分析,运用动力学瞬态分析的完全FULL法,分别研究了在列车时速40 km、80 km、120 km工况下的引黄隧洞结构的动力响应。计算结果表明:风洼梁隧道运营后的列车振动荷我的动力作用对下方引黄隧洞结构产生的影响较小,基本可忽略不计。  相似文献   

5.
120 km/h地铁多种减振轨道结构现场测试与分析   总被引:2,自引:1,他引:1  
为分析隧道内各种减振措施在地铁列车行车速度为120 km/h时的减振效果,以地铁现场测试为依托,在时域和频域内分析3种轨道结构各测试断面在行车速度为120 km/h下的振动特性。结果表明:DZⅢ-1型扣件普通整体道床轨道在各频段内对振动的衰减均有一定效果,隧道壁在低频范围内减振效果较好。梯形轨枕轨道结构轨枕至隧道壁间的振动衰减非常明显,约为50 dB。钢弹簧浮置板对振动的衰减主要在钢轨与浮置板之间完成,为50~80 dB。梯形轨枕轨道和钢弹簧浮置板轨道隧道壁主要响应频段内相对于DZⅢ-1型扣件普通整体道床轨道减振效果分别为22 dB和38 dB。  相似文献   

6.
对于高速铁路大直径盾构隧道,研究并讨论列车振动荷载对隧道结构安全性具有重大意义。以佛莞城际铁路狮子洋隧道工程为背景,基于ANSYS有限元方法,采用列车-轨道系统确定列车荷载后,计算不同工况下高速列车振动荷载对软硬不均地层大直径盾构隧道结构的影响,选取不同计算模型对比分析往复荷载作用下隧道地基累积变形的特征。计算表明:(1)双线同时有列车荷载作用时,产生的动力响应更为显著,且与两车间隔的时间有关,当间隔时间为振动周期的倍数时,振动效应最大;(2)较之主应力,列车振动对隧道位移和加速度的影响更加明显;(3)双线列车振动发生时间的偏差会引起响应的振动时程曲线产生约等于Δt的偏移现象,且振动幅值也会偏移,结构的动力响应与地层的动力响应(位移、加速度和主应力)存在相似的变化规律;(4)随着列车运行时间的累加,隧道基底土的累积塑性变形逐渐增大,但随着时间推移后期的增长速率明显减慢;(5)针对佛莞城际铁路狮子洋隧道,近东莞侧隧道基底以砂土为主,建议采用Anand J.Puppala模型进行累积塑性沉降计算;近广州侧隧道基底以淤泥为主,建议采用DingQing Li模型进行累积塑性沉降计算。  相似文献   

7.
列车荷载作用下深厚饱和软土盾构隧道沉降分析   总被引:3,自引:3,他引:0  
软土地层盾构隧道运营期沉降一直是工程界关注的重点问题。结合工程实例,采用不排水循环累积变形理论、循环三轴试验参数和简化动力有限元及分层总和法,分析深厚软土地层盾构隧道在运营期列车荷载作用下沉降响应。分析成果表明,隧道埋深越浅、隧底软土地层越厚,则运营期沉降越大;就沉降速率来看,隧道在运营期最大沉降速率将在隧道运营后的初期出现,且地层越差,沉降量越大,沉降速率越小,沉降稳定时间越长;采取一定沉降控制措施后,深厚软土地层盾构隧道在运营期列车循环荷载作用下的沉降是可控的。针对本项目的特点,结合分析成果,合理确定深厚软土地层盾构隧道沉降控制措施。  相似文献   

8.
饱和砂土地层的盾构隧道可能因液化影响产生变形及内力变化引起隧道破坏,地层液化对叠落隧道的影响可能因结构间的相互影响而加剧.基于工程实例,采用有限元分析软件Midas GTS建立三维模型,对可液化地层叠落隧道进行水平和竖向抗震动力时程分析,分析了液化地层在隧道不同位置以及不均匀分布情况对隧道的不同影响,对液化与非液化情况的隧道结构内力及变形进行对比,研究了地层加固对液化地层的处理效果.液化情况下隧道内力及变形均有一定程度的增加,其中液化地层处于隧道底部、液化地层分布不均匀对隧道影响程度较大,竖向地震作用主要影响隧道的竖向变形.综合考虑多种加固方案,中等液化程度时盾构隧道采用径向注浆加固地层有较好的效果.  相似文献   

9.
对于大直径水下盾构隧道,研究并讨论列车振动荷载对隧道结构安全性及地基稳定性具有重大意义。以三阳路公铁合建长江隧道工程为背景,采用2.5维数值计算程序对三阳路长江隧道段典型断面处进行计算分析,研究地铁振动荷载和汽车振动荷载耦合作用对隧道结构及隧道下覆粉细砂层稳定性的影响。计算结果表明:(1)在地铁振动荷载与汽车振动荷载联合作用下,隧道衬砌结构的位移振动响应量值及受力情况均较小,振动荷载不会对衬砌结构自身产生不利影响;(2)列车和汽车车队耦合荷载引起隧道下覆饱和粉细砂层超静孔隙水压力在隧道正下方衰减较为缓慢;(3)隧道下覆饱和粉细砂地层由正常的地铁振动荷载及汽车荷载激发的超静孔隙水压力不会超过1 kPa,在正常地铁荷载及正常汽车荷载单独作用或联合作用下,该饱和粉细砂地层能够保持稳定,不会发生液化失稳。  相似文献   

10.
为了控制列车通过时铁路隧道的振动强度,提出将橡胶混凝土材料应用于铁路隧道道床回填层的减振思路。基于动力学理论和有限元法,建立车辆-有砟轨道-隧道空间耦合动力学模型,分析橡胶混凝土回填层的减振性能以及对行车状态、轨道结构动力响应的影响。研究表明:橡胶混凝土回填层能发挥明显的减振效果,最大减振量为10. 3 d B,发生在中心频率80 Hz处;橡胶混凝土回填层对车辆动力响应影响不大,可以保证列车的安全平稳运行;采用橡胶混凝土回填层后,钢轨、轨枕、道床位移分别增加2. 06%、9. 48%和18. 58%,轨道各结构振动加速度变化较小,不会加剧轮轨的相互作用。  相似文献   

11.
基于车辆-轨道单元的无砟轨道动力特性有限元分析   总被引:6,自引:0,他引:6  
张斌  雷晓燕 《铁道学报》2011,33(7):78-85
根据CRTSⅡ型无砟轨道系统结构特点,建立列车-轨道-路基耦合系统动力分析模型,提出一种包含钢轨、扣件、轨下垫板、预制轨道板、CA砂浆层、混凝土支承层及路基的无砟轨道单元,并推导该单元刚度矩阵、质量矩阵和阻尼矩阵。运用Lagrange方程建立高速列车通过时无砟轨道动力特性分析的有限元数值方程。结合实例,研究无砟轨道轨下垫板、CA砂浆层、路基等结构参数对轨道振动的影响,并对有砟轨道与无砟轨道连接段动力特性进行分析,分析时考虑列车速度、轨道基础刚度等影响因素。计算结果表明:无砟轨道结构参数合理取值与刚度合理匹配可显著提高轨道整体工作性能;连接段轨道基础刚度变化对钢轨垂向加速度和轮轨作用力均有影响,其影响随列车速度提高而增大;连接段采取轨道刚度渐变过渡措施,可明显降低车辆-轨道结构冲击振动,有效改善行车品质。  相似文献   

12.
不同时速下地铁多种轨道结构现场测试与分析   总被引:2,自引:2,他引:0  
近年来地铁振动污染问题日益突出,地铁中亦采用多种减振轨道结构型式用于减振。为详细评价各种减振轨道结构的减振效果,以地铁动力测试为依托,在频域内分析4种轨道结构各测试断面在不同时速下的振动特征。结果表明:对于长枕埋入式整体道床轨道而言,行车速度的增加对钢轨、道床、隧道竖向加速度低频范围内的影响较大,而在中高频影响较小。对于GJ-Ⅲ型中等减振扣件轨道,随着行车速度的增加,GJ-Ⅲ型中等减振扣件轨道减振效果下降较明显。同时随着行车速度的提高,橡胶隔振垫浮置板轨道仅对浮置板和隧道减振效果较稳定,而钢弹簧浮置板轨道对钢轨、浮置板及隧道减振效果都很稳定。  相似文献   

13.
根据桥上CRTSⅡ型轨道结构形式,考虑高速列车与无砟轨道、桥梁之间的相互作用,建立基于新型车辆单元和无砟轨道-桥梁单元的车辆-无砟轨道-桥梁纵垂向耦合振动模型。运用有限元方法和Lagrange方程,分别推导车辆单元、无砟轨道-桥梁单元的刚度、质量和阻尼矩阵,建立有限元数值方程。考虑轨道平顺和轨道不平顺两种工况,求解有限元数值方程,分析梁端和跨中动力特性。计算结果表明,该模型及程序能够反映轨道结构的竖向振动响应。施加轨道不平顺,轮轨作用力增大了50%左右,梁端处钢轨的竖向加速度增加了6.5倍左右,跨中处从10 m/s~2增加到30 m/s~2。每种工况下,梁端和跨中处轨道结构的竖向位移、竖向加速度分别逐渐减小,梁端处轨道结构的振动及其位移变化都比跨中处大。  相似文献   

14.
地铁减振板式轨道作为一种新型轨道结构,具有质量高、施工快、维修少等特点,在地铁线路中逐渐得到推广应用。为揭示地铁板式轨道减振效果,选取天津地铁5号线板式轨道、现浇整体道床断面,采用现场试验和数值模拟方法,对其动力学行为和减振特性进行研究。结果表明:与现浇整体道床相比,地铁板式轨道降低了轮轨横、垂向力和安全性指标,有利于行车安全;由于板式轨道整体刚度较低,钢轨垂向位移略有增加;板式轨道与整体道床结构振动由上至下依次减小,且板式轨道减小幅度更为显著;与现浇整体道床相比,除轨道板振动加速度增大外,其余结构加速度均一定程度减小;板式轨道隧道壁处时域上减振明显,频域上全频段减振,最高减振达16.92 dB。  相似文献   

15.
不均匀沉降对无砟轨道路基动力特性的影响   总被引:3,自引:3,他引:0  
为探讨不均匀沉降对高速铁路无砟轨道路基动力特性的影响,建立CRTSⅡ型板式无砟轨道-路基系统的三维动力有限元模型,计算并对比分析有病害和无病害条件下路基的竖向动应力、动位移及振动加速度在空间上的分布规律,结果表明路基不均匀沉降导致无砟轨道路基的动力响应幅值及其空间分布规律发生明显的改变,且主要集中在支承层宽度范围、路基面以下0~1.5m深度内。由不均匀沉降引起路基动应力幅值可达100kPa,为无病害路基的3倍以上,动加速度幅值为无病害路基的2倍以上,在列车循环荷载作用下沉降区域将加速扩大,对路基产生非常不利的影响。  相似文献   

16.
线下基础上拱是隧道内无砟轨道线路常见病害之一,基础变形过大会破坏无砟轨道结构整体性,危害列车安全平稳运行。为快速适应隧道内轨下基础形变,结合弹性支承块式无砟轨道与框架板式无砟轨道优点,提出具有立体式调节系统的新型活动承轨台框架板式无砟轨道。基于有限元法分析不同结构参数对轨道结构力学的影响,验证大调整量下CA砂浆灌浆袋、承轨台高度的安全性能,根据计算结果,建议橡胶套靴下部刚度取450 kN/mm,CA砂浆弹性模量取250~300 MPa。通过动力学计算验证160、200、250 km/h速度下列车运行安全平稳性,表明列车横垂向振动加速度、轮轨横向力、轮重减载率、脱轨系数标均低于规范限值。研究成果对隧道内大调整量无砟轨道改良提供新参考方向。  相似文献   

17.
板式无砟轨道具有变形小、稳定性好的优点,在我国铁路客运专线上应用广泛。国内外学者在建立车辆、轨道以及车辆-轨道耦合系统模型及算法方面已做了许多工作。然而,已有的模型与实际情况尚有差异,有待进一步完善。根据板式无砟轨道的结构特点,采用板单元模拟轨下结构,建立了车辆-板式轨道耦合系统动力分析模型及算法,推导了板式轨道模型单元的刚度、质量以及阻尼矩阵;考虑轮轨非线性接触行为,引入交叉迭代法求解车辆-轨道耦合系统动力学方程;仿真分析了线路随机不平顺工况下,CRH3型动车通过CRTSⅡ型板式无砟轨道时,车辆和轨道结构的动力响应。该模型与算法比已有模型更接近实际,计算结果更准确可靠。  相似文献   

18.
桩板结构被广泛应用于我国高速铁路深厚软土地区地基处理,其对路基与桥梁间不均匀沉降控制具有显著效果,但针对桩板结构路桥过渡段上无砟轨道的结构动力特性却鲜有研究。以杭长高铁桩板结构路桥过渡段为研究对象,采用现场实车测试,分析不同行车速度下过渡段和相邻桥梁上无砟轨道结构动力特性及其差异。研究结果表明,随行车速度增加,钢轨和轨道板加速度呈指数增长,轨道板动位移呈线性增长;同一行车速度下,过渡段和桥梁上轨道结构振动无突变现象,差异性小;由行车测试数据拟合结果预测行车速度达到350 km/h时,过渡段上钢轨加速度约为2 324 m/s~2,轨道板动位移约为0.49 mm,轨道板加速度约为17.89 m/s~2。  相似文献   

19.
建立了车-线-隧道耦合动力学模型,输入实际的列车、轨道、隧道承力结构参数,获得地铁列车运行时的隧道承力结构动态激励。在此基础上,综合运用有限单元法和无限边界元法,建立了隧道-土体-建筑动力耦合模型,分析隧道周围土体及沿线建筑物的受振特性,探析地铁列车振动对环境的影响规律。结果表明:地铁列车运行引起周围环境的二次振动为低频振动,且主要为竖向振动和横向振动;列车通过时,地面竖向振动最大值出现在距离隧道中心线10 m处,竖向振动加速度除了在距离隧道中心线45 m点出现反弹外,其他各点的振动加速度幅值基本上都是随着距离的增加而逐渐减小;随着传播距离的增加,较高频率的振动成分幅值衰减较快。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号