首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
研究目的:目前,国内外桥梁抗震设计规范普遍采用基于墩底截面弯矩-曲率分析和塑性铰模型的变形能力分析方法来定量计算桥墩在水平地震下的延性能力,为了考察这种分析方法在我国铁路桥墩抗震设计中的适用性,对当前尚缺少研究的圆端形铁路桥墩的变形能力进行理论分析和试验验证。研究结论:(1)圆端形桥墩试件变形能力的理论计算结果与试验结果非常吻合,基于墩底截面弯矩-曲率分析和塑性铰模型的变形能力分析方法适用于圆端形铁路桥墩的抗震设计;(2)圆端形铁路桥墩的等效塑性铰长度经验公式和塑性铰区最大容许转角的延性安全系数的取值可以与我国JTG/T B02—01细则和CJJ166规范的规定相一致;(3)本文给出的圆端形桥墩变形能力分析方法为我国铁路桥梁圆端形桥墩的延性抗震设计提供了方法和依据。  相似文献   

2.
研究目的:圆端形空心高墩的试验研究对于铁路桥梁抗震设计理论的发展至关重要,因此本文以配箍率为设计变量,设计3个缩尺比为1/6的圆端形截面空心高墩试件,通过大型振动台试验结果的对比分析,研究圆端形铁路空心高墩的抗震性能,分析多遇、设计和罕遇地震下空心墩的开裂行为、加速度和位移反应、位移延性系数。研究结论:(1)试验桥墩均以弯曲破坏为主,水平向裂缝遍布墩身,侧向斜裂缝不明显;(2)墩底实心与空心过渡段截面为受力最不利位置,在抗震构造设计中应尤其注意;(3)加大箍筋用量可以改善桥墩位移延性,提高桥墩抗震能力;(4)本研究成果可应用于铁路桥墩抗震设计及方法研究领域。  相似文献   

3.
隔离桩施工对邻近铁路桥墩位移影响分析   总被引:1,自引:0,他引:1  
地铁盾构近距离穿越既有桥梁时可采取隔离桩作为地基加固措施,但当隔离桩距离既有桥梁较近时,需分析隔离桩施工对既有桥梁结构的影响。以南京某城际铁路高架桥为研究对象,采用数值模拟和现场监测分析了隔离桩(钻孔灌注桩)施工对铁路桥墩的影响。研究表明:隔离桩钻孔引起铁路桥墩上浮,隔离桩浇筑引起铁路桥墩下沉,隔离桩施工最终导致铁路桥墩下沉;隔离桩施工过程中,铁路桥墩向加固区轻微偏移,最终水平位移较小,在可控范围内;在南京地区采用施一隔五的施工顺序进行钻孔灌注桩施工时,对铁路桥墩的位移影响较小,也在可控范围内。  相似文献   

4.
为厘清小剪跨比圆端铁路桥墩横桥向的地震损伤机理,以国内某铁路沿线桥梁为参考开展3组缩尺比1∶8的拟静力试验,对滞回曲线的延性、残余位移、滞回耗能和刚度退化4个方面进行分析,以试验结果为参考使用OpenSees建立纤维截面有限元模型并进行耐震时程动力计算,以桥墩的位移延性比为损伤指标,基于试验中观察得到的4个关键节点定义无、轻微、中度、严重和完全损伤5种损伤状态之间的位移延性比临界值,通过易损性分析桥墩的损伤发展历程。研究结果表明:1)配筋率从0.3%提升至0.7%,桥墩的承载能力提高至1.37倍,极限位移提高至1.22倍,最终残余位移提高至1.55倍,耗散能量增加至1.80倍,初始刚度提升至1.08倍,最终刚度提升至1.12倍。提高配筋率可以提升桥梁抗震性能,也能增加桥梁抗震韧性。2)当桥墩配筋率由0.3%提至0.7%时,在多遇地震下,轻微损伤概率从87.2%降为29.8%;在设计地震下,中度损伤的概率从63.5%降为30.0%;在罕遇地震下,严重损伤的概率从61.7%降为16.4%。纵筋配筋率可以大幅降低桥墩的损伤概率,提升桥墩的抗震性能。3)在现行铁路规范允许的延性系数为4.8时,...  相似文献   

5.
钢筋混凝土空心墩延性变形能力分析   总被引:3,自引:0,他引:3  
基于纤维梁柱单元建立钢筋混凝土空心墩滞回分析模型,与试验结果对比验证模型准确性。在此基础上讨论纵筋配筋、壁厚、混凝土强度、剪跨比等因素对空心墩延性变形能力影响。研究表明:对剪跨比大于7.0的高墩,提高纵筋配筋率可有效增强其延性变形能力;而对于剪跨比小于5.0的中低墩,提高纵筋配筋率对其延性变形能力不利;在轴压比和纵筋配筋率一定情况下,空心墩壁厚对其延性变形能力影响不大,而保持轴力和纵筋配筋量不变时,增大壁厚可有效增加中低墩延性变形能力;且在固定轴力下,增大混凝土强度对提高中低墩延性变形能力效果显著。  相似文献   

6.
为满足太白路桥的高烈度抗震要求,对该桥进行了减隔震设计分析。利用Midas/Civil软件对该桥进行了非线性时程分析,并对比了减隔震设计前后桥梁的地震响应。结果表明:安装粘滞阻尼器和E型钢支座后,桥梁固定墩的纵向和横向墩底弯矩和剪力都明显减小;桥梁纵向和横向梁端位移也明显减小;固定墩墩顶位移在纵向和横向也减小很多。采用本文提出的减隔震设计方案后,太白路桥能够满足所在地区的抗震要求,大大提高了桥梁结构在地震作用下的安全性。  相似文献   

7.
为改善低配筋铁路重力式桥墩的延性性能,提出1种墩底设置无黏结钢筋的铁路重力式桥墩.设计制作配筋率分别为0.2%和0.3%、钢筋完全黏结和墩底设置无黏结钢筋共4个模型桥墩,采用拟静力试验,进行墩底设置无黏结钢筋铁路重力式桥墩抗震性能研究.结果表明:墩底设置无黏结钢筋铁路重力式桥墩破坏时仅在墩底形成1条贯穿裂缝,区别于钢筋...  相似文献   

8.
研究目的:基于大地震中铁路桥梁因为墩梁横向位移过大造成的落梁等破坏,本文提出在T梁和墩顶之间增设黏滞阻尼器对桥梁进行减震控制的加固方案。以采用圆端型桥墩的某混凝土简支双片式T梁铁路桥为例,通过ANSYS软件建立桥梁结构模型,选取4条地震动记录,分析地震作用下不同墩高时桥梁的动力响应;选取两种液体黏滞阻尼器的加固布置方案,分析不同的阻尼器布置位置对桥梁墩顶的横向位移以及墩梁横向相对位移的影响规律,研究阻尼器不同设计参数对桥梁耗能减震的效果,结合阻尼器优化得到的参数并最终选定一种效果较好的加固方案。研究结论:(1) 8度罕遇地震作用下,墩顶位移和墩梁相对位移较大,超出了铁路桥梁的允许位移值;(2)随着墩高的增大,墩顶位移随之增大,而墩梁相对位移的变化规律不明显;(3)本铁路桥梁加固时液体黏滞阻尼器的推荐参数为阻尼速度指数a=0.3,阻尼系数C=5 000 k N·(s/m)a;(4)液体黏滞阻尼器能够显著降低地震作用下的墩顶位移和墩梁相对位移,消能减震作用显著;(5)本研究结论可用于既有铁路桥梁的抗震加固及减震控制。  相似文献   

9.
本文针对铁路桥墩横向抗震条件相对较差的情况,提出了两种抗震加固方法一墩顶隔震加固法和相邻桥墩组合振动控制加固法。建立了相应的计算模型,推导了其振动及控制方程,并进行了理论上的分析研究。研究结果表明:这两种方法都能有效地减小地震响应。  相似文献   

10.
研究目的:为探讨行波激励条件下铁路矮塔斜拉桥弹塑性地震响应的变化规律,基于弹塑性分析理论基础,本文以某主跨(144+288+144)m的铁路矮塔斜拉桥为工程背景,采用大刚度法实现多点激励以模拟行波效应,对比分析一致激励和行波激励(考虑不同剪切波速)条件下铁路矮塔斜拉桥弹塑性地震响应的差异。研究结论:(1)相比一致激励,行波效应会引起桥墩产生更大的弹塑性位移、弯矩响应及其非线性位移延性比(延性指标),并使桥墩发生更大的塑性变形;(2)当剪切波速为200 m/s时,行波效应使9~#、10~#主墩福州与平潭侧薄壁墩身非线性位移延性比分别增大6.32%、17.90%、17.67%和33.92%,降低了其延性抗震能力;(3)进行类似结构延性抗震设计时,应考虑地震行波效应的影响;(4)该研究成果可用于指导桥梁延性抗震设计。  相似文献   

11.
研究地震作用下RC框剪结构的框架柱、剪力墙的曲率延性需求与结构最大层间位移延性需求之间的统计关系。框架柱、梁与剪力墙均采用指定弯矩―曲率关系的滞回单元,建立15层和30层平面RC框架剪力墙数值结构。通过弹塑性静力分析和地震动力时程分析,获得框架柱、剪力墙的曲率延性需求以及结构最大层间位移延性需求,探讨地震加速度峰值、结构弯剪比例对延性需求的影响,分别建立框架柱曲率延性需求与结构层间位移延性需求、剪力墙曲率延性需求与结构层间位移延性需求的定量统计关系。结果表明:框架柱、剪力墙的曲率延性需求和结构层间位移延性需求随地震加速度峰值增加而增加;剪力墙曲率延性需求随弯剪比例系数增加而减小,而框架柱和结构层间位移延性需求随弯剪比例系数增加而增加。考虑弯剪比例影响,拟合建立的函数模型与样本分析数据有较好的吻合,可指导RC框剪结构的初步抗震延性设计和评估。  相似文献   

12.
圆钢管混凝土轴压短柱受力机理影响因素分析   总被引:5,自引:0,他引:5  
根据钢管混凝土轴压短柱弹塑性全过程分析理论,在试验验证的基础上,对钢管混凝土轴压短柱受力机理进行数值仿真,分析了钢管混凝土加载过程中各内力随纵向应变的变化情况,探讨了含钢率、钢材屈服强度和混凝土强度对钢管混凝土力学性能的影响。研究结果表明:钢管混凝土在受荷过程中,核心混凝土由于受到钢管的约束其纵向应力有较大提高,延性得到显著提高,钢管为混凝土提供径向约束,但其纵向应力大幅度降低;在其他条件相同的情况下,含钢率和钢材屈服强度越高,则钢管混凝土轴压短柱套箍作用越强,承载力越高,延性越好;而混凝土强度越高,则试件套箍作用越弱,延性越差,但承载力越高。  相似文献   

13.
采用四点弯曲试验研究用预应力碳纤维织物增强混凝土板加固持载RC梁的抗弯性能。针对梁的持载水平完成2个加固工况试验及1个参考工况试验。对各工况试验梁的荷载-跨中挠度曲线、荷载-应变曲线、承载力、延性及破坏模式进行分析。研究结果表明:预应力CTRC板能明显提高持载混凝土梁的正常使用极限状态荷载和极限承载力但加固梁的延性降低。与未加固梁相比,加固梁的正常使用极限状态荷载和极限承载力最大分别提高了64.1%和80.6%。本文提出的一种加固梁极限承载力的计算方法,其极限承载力的计算值与试验值吻合良好。  相似文献   

14.
基于适当的钢筋、混凝土本构关系以及锈蚀钢筋和混凝土的黏结滑移模型,建立有限元模型,对5根不同主筋锈蚀率的钢筋混凝土梁进行承载特性分析。获得了梁中点处的荷载-挠度关系,受力筋的应变分布以及钢筋与混凝土之间的滑移分布。研究结果表明:随着受力筋锈蚀率的增大,钢筋混凝土梁的极限承载力降低,延性下降,受力筋的最大拉应变和伸长量逐渐增加,钢筋和混凝土之间的滑移量也大幅增加。  相似文献   

15.
活性粉末混凝土抗拉性能研究   总被引:4,自引:0,他引:4  
通过不同钢纤维含量活性粉末混凝土的拉伸性能试验,测定活性粉末混凝土的劈裂抗拉强度、轴心抗拉强度及轴心受拉应力-应变全曲线.研究钢纤维体积率对活性粉末混凝土劈裂抗拉强度、轴心抗拉强度的影响规律.研究表明,随着钢纤维掺量的增加,活性粉末混凝土的劈裂抗拉强度、轴心抗拉强度呈线性增大规律;给出活性粉末混凝土轴心抗拉强度和劈裂抗拉强度的关系;提出活性粉末混凝土轴心受拉应力-应变全曲线的数学模型,并根据试验结果确定模型参数.研究成果可为活性粉末混凝土在结构中的应用提供依据.  相似文献   

16.
复合砂浆钢筋网加固RC受弯构件粘结破坏研究   总被引:2,自引:0,他引:2  
对用无机材料高性能水泥复合砂浆钢筋网加固的RC梁进行了正截面二次受力抗弯研究。试验包括10根用夏合砂浆钢筋网加固的梁和两根未加固的对比梁,采用U形三面的加固方式(复合砂浆钢筋网包裹了梁的受拉面及两个侧面),对加固梁进行解析分析,试验结果表明:复合砂浆钢筋网薄层可以明显地提高钢筋混凝土梁的抗弯承载力,提高抗裂性能;若加固钢筋使用过多,可能产生加固层端部锚固失效而破坏。据此,提出了与锚固破坏相关的界限加固配筋率,并对实际加固措施提出了建议。  相似文献   

17.
碳纤维布与钢板复合加固钢筋混凝土梁抗弯性能试验研究   总被引:5,自引:0,他引:5  
卢亦焱  周婷 《铁道学报》2006,28(1):80-87
对碳纤维布与钢板复合加固的钢筋混凝土梁的抗弯性能进行试验研究,探讨了混凝土强度、纵筋配筋率、碳纤维布用量、钢板用量、锚固方式等对复合加固的钢筋混凝土梁的破坏机理、受力性能的影响。试验结果表明:碳纤维与钢板复合加固钢筋混凝土梁能有效地提高截面承载力,约束裂缝的发展,提高刚度;加载点及端部采用的U型钢板箍较好地防止了梁中剥离破坏的发生。同单种材料加固梁相比,复合加固梁的抗弯性能有较好的改善。  相似文献   

18.
为研究钢骨混凝土T形截面柱节点的构造措施及抗震性能,对6个钢骨混凝土T形截面异形柱节点及2个混凝土T形截面异形柱节点进行试验,考虑单、双向荷载作用下节点低周反复荷载作用,测得了节点梁端荷载-位移曲线和骨架曲线以及各阶段的荷载和位移值,并分析了节点的延性、耗能、抗剪性能、功比指数及破坏形态。试验研究表明,该节点形式具有很好的延性和能量耗散能力,证明配有钢管和型钢的钢骨混凝土T形柱和钢筋混凝土梁连接方法是可靠的,节点能够有效传递弯矩和剪力。由于柱为钢骨混凝土柱,节点核心区的抗剪承载力有了较大的提高。双向荷载作用下试件的屈服荷载、极限荷载及破坏荷载相对单向情况下的均较小。  相似文献   

19.
目前我国钢桁拱桥建设技术已达到国际先进水平,但是大跨度的钢桁拱桥多用于公路,专用于铁路的比较少,以国内单孔跨度最大的双线铁路钢桁拱桥——贵广铁路主跨286 m的东平水道大桥为工程实例进行研究。对其进行平面及空间分析,比较在不同荷载工况下,钢桁拱桥选择不同拱轴线、矢跨比时的内力和应力变化,深入了解铁路大跨度钢桁架拱桥的受力特性。研究表明,该类桥梁结构的拱轴线采用圆曲线和二次抛物线比较合理,并且在合理的范围内,上、下拱肋矢跨比越大,且二者差值越大越经济。  相似文献   

20.
碳纤维布与钢板复合加固钢筋混凝土梁刚度分析   总被引:1,自引:0,他引:1  
卢亦焱  周婷 《铁道学报》2007,29(1):72-76
碳纤维布与钢板复合加固是一种新型的加固方法,可应用于桥梁等大跨度梁的加固。本文对12根碳纤维布与钢板复合加固钢筋混凝土梁进行了试验研究,结果表明,碳纤维布与钢板复合加固方法可较大幅度地提高钢筋混凝土梁的截面刚度,减小其变形。在试验研究的基础上,分析钢筋混凝土梁在碳纤维布与钢板复合加固后截面刚度的变化规律,并运用刚度解析法对截面刚度进行了计算,同时结合相关试验资料的统计分析,提出复合加固梁截面刚度的简化计算公式。其计算结果与试验结果吻合较好,可为实际工程应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号