首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
运用道岔系统动力学理论,考虑轨距加宽式转辙器的结构特性,建立列车/道岔耦合动力学模型,以350 km/h客运专线18号高速道岔为例,计算分析了列车以350 km/h直向及80 km/h侧向过岔时的动力特性.结果表明:转辙器轨距加宽可提高列车直、侧向过岔时的平稳性,降低直向过岔时尖轨的磨耗指数,减轻尖轨侧磨,增加尖轨开始受力截面的轨顶宽度;增大转辙器部位的动轮载、轮缘力及动应力,对尖轨受力不利;转辙器轨距加宽对列车侧向过岔的轮重减载率和脱轨系数有不利影响,对直向过岔的影响不大.因此,建议在我国350 km/h客运专线高速道岔设计中,暂不使用转辙器轨距加宽技术.  相似文献   

2.
介绍了德国BWG公司基于动态轨距优化方案设计的KGO道岔,针对客运专线18号动态轨距优化转辙器道岔建立了车辆/道岔动力学仿真模型,对车辆以250 km/h速度直逆向和80 km/h速度侧逆向通过时的舒适性、安全性进行了仿真分析,结果表明各项动力响应完全满足车辆舒适性、安全性通过要求.另外,对传统18号道岔和18号动态轨距优化道岔的动力响应进行了比较,发现在道岔转辙器部分设置轨距加宽可以提高运行舒适度,以及减少车轮,尖轨的磨耗,但会降低侧向过岔时的运行舒适性.  相似文献   

3.
3号道岔侧股的曲线半径较小,受到的轮轨冲击力较大,这在一定程度上降低了有轨电车侧向过岔的安全性。为研究有轨电车侧向通过3号道岔时的动力学性能,选取了列车运行速度、摩擦系数、轨距和坡度4个参数作为影响因素。基于车辆动力学理论,对比分析了各影响因素不同取值下有轨电车侧逆向和侧顺向通过3号道岔时轮轨垂向力、轮轨横向力、脱轨系数及轮重减载率的变化规律。仿真结果表明,有轨电车侧顺向通过3号道岔的动力学性能总体优于侧逆向;在不同的速度、轨距和坡度工况下,侧顺向过岔的安全性优于侧逆向;在不同的摩擦系数工况下,侧逆向过岔的安全性优于侧顺向。4种影响因素对有轨电车侧向通过3号道岔时的轮重减载率影响最大。4种因素中,列车运行速度和摩擦系数对有轨电车侧向过岔的影响较为显著。  相似文献   

4.
阐述侧向容许通过220 km/h的62号道岔的设计参数和平面线型,分析道岔转辙器、辙叉、扣件系统、无砟轨道基础和转换系统结构,对主要部件参数进行计算.利用轮轨动力学分析动车组通过62号道岔时的安全性和平稳性,总结其在现场铺设的技术关键.现场动力学测试表明,动车组以385 km/h直向和以220 km/h侧向通过62号试验道岔时安全平稳,道岔关键部件变形和强度等满足设计要求,岔区刚度均匀化,转换设备工作正常.  相似文献   

5.
针对大秦(大同—秦皇岛)重载铁路高锰钢固定辙叉磨耗严重问题,建立车辆-道岔系统动力学模型,比较车轮不同磨耗程度下重载货车侧向通过固定辙叉时的车轮滚动圆半径、轮轨垂向力、轮轨横向和纵向蠕滑力、货车过叉平顺性等动力学响应,分析不同轮叉型面的匹配规律。结果表明:当车辆由翼轨向心轨过渡时,标准车轮与磨耗初期车轮滚动圆半径突变值在4.3~6.5 mm,磨耗中后期车轮滚动圆半径突变值降低50%,减小了对辙叉的磨损,同时磨耗中后期车轮的轮轨垂向力较标准型车轮减小近1/2,降低了对心轨的垂向冲击;标准车轮与磨耗初期车轮对标准辙叉磨损较大,磨耗中后期车轮通过辙叉时各动力学性能指标均较理想,有利于改善轮叉间的相互作用。  相似文献   

6.
基于岔区轮轨接触关系及轮轨系统动力学理论,以18号高速道岔可动辙叉为例,分别建立翼轨不同加高设计方案下的辙叉模型以及CRH2型车车辆模型,分析翼轨加高设计对列车过岔动力特性的影响。研究结果表明:列车过岔时,随着翼轨向外弯折,轮轨接触区域开始外移,并由此造成轮对质心垂向位置的降低,引发剧烈的轮轨冲击作用;通过设置合理的翼轨加高值,可有效解决轮对质心垂向位置降低的问题,提高列车过岔平稳性及旅客乘车舒适度;翼轨最大加高值为2 mm时最佳,与无加高设计相比,翼轨加高后,列车第一轮对垂向轮轨力及减载率最大值分别降低了18.16%和35.8%、轮对和车体的垂向加速度则分别降低了48.1%和34.7%,列车垂向振动特性得到明显改善;随着列车运行速度的提高,其过岔时的轮轨动态响应也会不断加剧,鉴于翼轨加高可有效降低列车过岔时的垂向动力相互作用,合理的翼轨加高设计将对列车在岔区的提速具有重要意义。研究成果可为我国铁路线路道岔可动辙叉的结构优化设计提供理论参考。  相似文献   

7.
张海洋 《铁道建筑》2013,(1):101-105
车辆过岔时横移量的大小对道岔的通过速度有着决定性的影响,同时也是动力学研究和设计重要参数.本文以国产300 km/h动力分散式动车组拖车、客运专线18号单开(右开)道岔为研究对象,建立ADAMS/Rail模型,以200 km/h,250 km/h,275 km/h三个速度级分直顺向与直逆向两种过岔方式共6种工况进行计算分析,得到了车辆过岔时轮对横移状态的一般规律,在以相同速度通过道岔时,顺向出岔时轮对横移量要比逆向进岔时大;在相同条件下,轮对横移运动在辙叉区要比转辙器区剧烈,这主要是由于心轨截面变化较快,即轨道不平顺波长较短所致.  相似文献   

8.
道岔是市域铁路必不可少的设备,其构造复杂、零部件多。针对城市轨道交通道岔技术标准相对较低、而干线铁路道岔造价相对较高的情况,结合市域铁路特点,对市域铁路道岔方案进行比选,提出市域铁路正线非地下线地段采用12号可动心轨道岔、地下线地段采用12号固定辙叉道岔的总体方案,并完成这2种道岔的结构设计,可满足直、侧向160km/h和50km/h的过岔速度要求,同时完成市域铁路地下线地段、桥上普通地段和桥上高等减振地段岔区无砟轨道结构设计。  相似文献   

9.
根据道岔的实际尺寸和平面布置,在Simpack软件中构建变截面道岔模型,同时建立动车组和各单节车的模型.考虑轮轨之间的多点接触关系,模拟计算了动车组和单节车以80 km/h的速度侧向通过18号可动心轨式单开道岔的动力学响应.结果表明:由于车钩作用,通过转辙器区和辙叉区时,动车组瞬时横向最大冲击和单节车有一些不同;通过道岔的响应波形有较大的差别,尤其是垂向力、减载率和车体加速度.  相似文献   

10.
研究目的:道岔侧向通过速度是影响地铁线路运输能力的重要因素,为探明地铁道岔侧向最大通过速度,以某地铁12号道岔为例,基于迹线法和车辆-道岔耦合动力学,结合拉丁超立方随机抽样方法,生成关键动力学参数随机样本,研究标准车轮与标准钢轨和磨耗车轮与实测钢轨匹配的轮轨接触几何特性和车辆-道岔系统动力响应,以及长期运营条件下道岔侧向容许速度。研究结论:(1)轮轨关系演变后,轮载过渡延后;(2)实测轮轨匹配下,道岔侧逆向容许通过速度比轮轨为标准设计状态时低2 km/h;(3)结合长期运营条件下轮轨实际状态,考虑车辆动力学参数的随机性,所分析的12号道岔侧向容许通过速度为55 km/h;(4)针对不同的地铁道岔,均可以通过实测轮轨型面,以及考虑车辆动力学参数的随机性的方法,探明既有道岔的侧向最大通过速度,提升地铁线路的运输能力。  相似文献   

11.
对岔区轨道刚度合理取值及均匀化技术、尖轨降低值优化技术、转辙器运动学轨距优化技术、侧线线型设计技术对动车组高速直、侧向过岔平稳性的影响进行了试验研究。研究结论如下:为保证旅客乘坐舒适性,必须结合采用的扣件特点选择合适的岔区轨道刚度,刚度均匀化在理论上可以实现,实际上受施工质量以及道岔精调状态等因素影响;尖轨相对于基本轨的降低值决定了轮轨垂直力在尖轨和基本轨间的过渡范围及过渡比例,并直接影响列车过岔平稳性,降低值过大会严重影响道岔平顺性及降低行车平稳性;是否采用运动学轨距优化技术对道岔平顺性无显著影响,客专线道岔不采用运动学轨距优化技术是有试验数据支撑的;动车组侧向通过42号和62号道岔的车体水平加速度实测最大值小于1.5m/s2,符合技术条件要求,和设计预期一致。  相似文献   

12.
不足位移对高速道岔动力特性的影响   总被引:1,自引:0,他引:1  
为揭示道岔不足位移对高速行车的影响,根据高速道岔、列车的结构特点、力学特性和相互作用关系,建立车辆-道岔耦合动力学模型,并以高速列车直向350km/h、侧向80km/h通过350km/h客运专线18号无砟道岔为例,分析不同不足位移情形下车辆和道岔的动力学特性。结果表明:尖轨、心轨不足位移对列车动轮载、钢轨动应力影响较小,对轮缘力、车体横向加速度、轮重减载率、脱轨系数影响较大;不足位移会严重影响高速列车直、侧向过岔的舒适性及安全性,影响高速道岔正常工作状态;牵引转换设计时,应严格控制道岔尖轨、心轨不足位移。  相似文献   

13.
新型直向过岔速度为200 km/h的60 kg/m钢轨12号可动心轨单开道岔,汲取近几年道岔发展的成熟技术,在保证与既有提速道岔互换性的基础上,改进了平面线型和尺寸,优化了道岔结构,提高了道岔各部件的强度和稳定性。  相似文献   

14.
基于列车动力学和道岔动力学理论,建立可考虑整体道床12号交叉渡线道岔钢轨型面变化的列车-道岔耦合动力学计算模型。用数值模拟方法分析动车组和货车以50 km/h侧向通过该交叉渡线道岔时的动力学特性。结果表明:动车组和货车通过时轮轨力、脱轨系数、减载率、轮轴横向力、车体振动响应有所不同,但均满足安全舒适要求。  相似文献   

15.
基于采用ANSYS-DYNA软件所建立的LMA型踏面标准车轮和38号高速道岔辙叉区的三维有限元模型,研究车轮直向、逆向通过辙叉区时的轮岔接触状态和轮轨动力特性。通过所获得的车轮质心高度、接触斑位置和面积以及轮轨横向、垂向接触力的动态变化特征,分析车轮不同横移量对轮岔接触的影响。研究结果表明,车轮通过辙叉区时必然发生两点接触,且存在轮轨力转移过程;可动心轨式辙叉可消除可能引起车辆脱轨的道岔的"有害空间",并明显改善车辆过岔性能,但叉心区走行轨线的不连续仍将引起车轮和道岔的振动;轮对横移量对轮-岔的接触状态和振动有一定影响。  相似文献   

16.
刘启宾 《铁道建筑》2015,(2):107-111
基于Archard磨耗模型并结合有限元静动力分析方法,对重载铁路合金钢心轨组合辙叉道岔岔区钢轨垂直磨耗特性进行了研究,给出了一种研究钢轨磨耗的新方法。研究结果表明:受不同断面轮轨接触特性及轮轨力差异的影响,岔区各断面轮轨接触斑内磨耗量的大小及分布存在差异;辙叉轮载过渡区翼轨磨耗严重的机理是轮轨法向接触应力大于翼轨材料硬度的0.8倍导致了磨耗系数的突变,建议将此区域翼轨镶嵌合金钢材料或采用深度爆炸硬化技术处理;轮轨接触应力随行车速度的增加有所增加,随列车轴重的增加而大幅增加,建议有条件的情况下降低C80,C70列车的侧向过岔速度,以减缓道岔的磨耗速率。  相似文献   

17.
铁路道岔动态轨距优化技术的仿真研究   总被引:1,自引:1,他引:0  
针对既有道岔动态轨距优化技术,建立了车辆-道岔耦合动力学仿真模型,对既有动态轨距优化方案道岔与传统道岔的动力学性能进行对比分析,结果表明既有优化方案可以改善岔区轮轨接触关系,保持车辆正弦曲线的运行轨迹;但部分动力响应幅值还有些偏大,考虑对即有优化方案参数做进一步的研究.通过改变轨距加宽区长度、加宽最大值等参数,设计了5种新的优化方案并进行了动力学性能对比,确定出了最佳方案.再对最新优化方案与既有优化方案进行动力学性能对比,结果表明缩减加宽区长度对提高车辆直逆向通过能力、减少尖轨受力是有利的;改变轨距加宽区长度、加宽最大值对侧逆向过岔而言效果不显著.  相似文献   

18.
通过分析高速道岔辙叉区测试数据发现,在辙叉区存在明显的轮轨冲击响应,部分情况下减载率瞬时峰值接近安全限值。建立高速道岔辙叉动力学模型,分析高速列车通过辙叉区时的动力学响应。结果表明:轮对通过辙叉区时轮轨接触点在翼轨和心轨之间进行转换,车轮滚动圆半径发生改变,轮对质心垂向位置在轮载过渡区急剧变化,高速行车环境下形成轮轨冲击荷载。通过设置合理的翼轨抬高值,可有效抑制轮对质心垂向位移,降低轮轨动力作用,从而改善辙叉区结构不平顺的动力效应。  相似文献   

19.
基于迹线法和车辆-道岔耦合动力学理论,以60 kg/m钢轨12号固定辙叉为例,利用SIMPACK多体动力学仿真软件研究车辆过岔时轮轨接触几何关系和轮轨动力作用,并对比分析翼轨顶面坡度对固定辙叉性能的影响,得出了翼轨顶面坡度值的选取和评价方法。研究结果表明:车辆通过不同翼轨顶面坡度的固定辙叉时,随着翼轨顶面坡度的增大,其动力学指标和磨耗损伤也随之增大;翼轨顶面坡度为1∶20的固定辙叉性能最优,其次为1∶15和1∶13;翼轨顶面坡度的取值方法是合理的。  相似文献   

20.
为了明确列车启动距离和制动距离对道岔尖轨侧磨和伤损的影响,为地铁折返线道岔合理选型及布置提供依据,采用道岔侧向过岔动力学仿真分析方法,根据最小势能原理,考虑轮轨间摩擦系数随列车侧向过岔速度的提高而降低这一黏着特性,分析了不同启动距离和制动距离下,尖轨侧面磨耗及轮轨纵横向加速度等动力响应的变化规律.计算表明,延长列车启动距离和制动距离可以提高侧向过岔速度,减轻尖轨侧磨,但会增加轮轨动力响应,且增加了运行长度,使折返运行时间变长.可以采取增大导曲线半径或直接换铺更大号码道岔来缩短运行时间.合理的启动距离和制动距离应该是:道岔基本轨前端距站台端部距离20~30 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号